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ABSTRACT
Music is an extremely subjective art form whose commodification via the recording
industry in the 20th century has led to an increasingly subdivided set of genre labels
that attempt to organize musical styles into definite categories. Music psychology has
been studying the processes through which music is perceived, created, responded to,
and incorporated into everyday life, and, modern artificial intelligence technology can
be exploited in such a direction. Music classification and generation are emerging fields
that gained much attention recently, especially with the latest discoveries within deep
learning technologies. Self attention networks have in fact brought huge benefits for
several tasks of classification and generation in different domainswhere data of different
types were used (text, images, videos, sounds). In this article, we want to analyze the
effectiveness of Transformers for both classification and generation tasks and study the
performances of classification at different granularity and of generation using different
human and automatic metrics. The input data consist of MIDI sounds that we have
considered from different datasets: sounds from 397 Nintendo Entertainment System
video games, classical pieces, and rock songs from different composers and bands.
We have performed classification tasks within each dataset to identify the types or
composers of each sample (fine-grained) and classification at a higher level. In the latter,
we combined the three datasets together with the goal of identifying for each sample
just NES, rock, or classical (coarse-grained) pieces. The proposed transformers-based
approach outperformed competitors based on deep learning and machine learning
approaches. Finally, the generation task has been carried out on each dataset and the
resulting samples have been evaluated using human and automatic metrics (the local
alignment).

Subjects Artificial Intelligence, Multimedia, Natural Language and Speech, Neural Networks
Keywords Classification, Deep Learning, Generation, MIDI, Transformers

INTRODUCTION
Artificial intelligence (AI) is one of the current hot technologies within research
communities, daily life, and business. It also represents an important driver for the
creation and the future dissemination of the metaverse ecosystem Lee et al (2021). It
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affects several domains and is used wherever there is the need to provide an answer
automatically. Music is one of such domains and one of the most known tools which
leverages AI in the music domain (to identify songs from a small sample) is represented
by Shazam (https://www.shazam.com/home) or the music discovery algorithms of Spotify
(https://www.spotify.com/). The growing number of industrial applications of music
information retrieval has provided the availability of large amounts of music data and
rich diversity of genres with the related tasks of their automatic classification Qiu, Li &
Sung (2021). Due to such availability of music data, deep learning approaches have taken
over and have been able to achieve impressive performances on classification and data
generation tasks. At a higher level, deep learning approaches outperformed state-of-the-art
machine learning approaches in several tasks where data are represented as text Atzeni &
Recupero (2020), images Chai et al. (2021), and time-series Carta et al. (2021); Barra et al.
(2020) such as financial or audio data. Music is indeed a type of time-series data and can
therefore benefit from the development of cutting-edge approaches within the AI sphere.

Identifying and classifying music by genre have typically been the domain of trained
musicologists who can quickly identify timbral, rhythmic, harmonic, andmelodic signifiers
by ear and use these to label a given piece or excerpt. With the rise of AI technologies, this
has changed as well. Today we already have the technology to automatically solve several
tasks which have historically been performed by people. An AI music classifier or an AI
composer were terms used only in old science-fiction movies or books but they are reality
today Carnovalini & Rodà (2020).

For machines, classifying and generating music by genre has always been a challenging
task especially if we consider the massive amounts of music data and the highly
heterogeneous type it can be: pop music, rock, jazz, blues, classical, musical theatre,
electronic, heavy metal, children’s instrumental, soundtracks, etc. Differences between
music types can include many characteristics: for the traditional genres, style features
might be more defined whereas for some sub-genres patterns might be less recognizable
even for a musicologist.

Musical data can be encoded through a digital or analog recording, or more indirectly
through a musical notation system. The first one records the audio intensity over time
based on sound signals like anMP3 or an AIFF audio file for example. They contain directly
all the sounds and are not easy to edit. In any case, recent works have shown how to learn
powerful representations from this kind of audio (Baevski et al., 2020). The second one
is a symbolic representation through a musical score. MIDI (MIDI Association, 2023) is a
symbolic music format equivalent to a written musical score and gives specific information
about pitch, duration, volume, and tempo, but contains no sound itself. Audio would
represent the physical recording of the sound. It consists of a protocol that allows musical
information to be shared between electronic musical devices and computers. When using
MIDI format, the pitch, duration, start time, and velocity (loudness) of each note and
chord are stored in a file. This is exactly analogous to a traditional notated musical score,
except the information is stored in a way that is easily analyzed by computers as opposed
to human musicians. Each of these features may be inspected to try to identify the music
genre or to generate new musical patterns. One convenient characteristic of MIDI files is
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their size, usually very small. Moreover, MIDI files provide a higher level of detail on music
elements, they are versatile and controllable and allow researchers and authors to better
understand the music represented. Given their characteristics, MIDI files can be considered
as a kind of string-type data in a time series format. This allows us to adopt natural language
processing (NLP) techniques (Dridi, Atzeni & Recupero, 2019; Dridi & Recupero, 2019) to
them. Several successful efforts have been already done for classification and generation
tasks related to MIDI music (Cataltepe, Yusuf & Sonmez, 2007; Jedrzejewska, Zjawinski &
Stasiak, 2018; Gunawan, Iman & Suhartono, 2020; Payne, 2019). Authors have always used
a combination of feature extraction techniques and deep learning methods and come
up with promising results. As previously mentioned, this was possible thanks to the high
availability of labeledMIDImusic data that allowmachine and deep learning approaches to
perform well. At the same time, transformers have seen a marked increase in use in the last
couple of years. They were dis covered in Vaswani et al. (2017) and were able to beat several
state-of-the-art approaches on different NLP tasks. They have been employed in machine
language translation (Sefara et al., 2021), conversational agents (Golovanov et al., 2020),
sentiment analysis (Pipalia, Bhadja & Shukla, 2020), language generation (Varshney et al.,
2020), text summarization (Luo, Guo & Guo, 2019) and so on bringing a huge advancement
to the literature in different tasks and domains. Transformers have been already successfully
applied to performmusic genre classification and generation (Qiu, Li & Sung, 2021;Huang
et al., 2018).

In this article, we follow this direction and want to further analyze the effectiveness of
transformers for both classification and generation tasks at fine and coarse-grained levels,
and especially when there are not enough labeled data samples. One example occurs with
MIDI soundtracks used in old videogames. We are interested to explore this issue and, as
such, in this article, we consider the Nintendo Entertainment System soundtracks together
with two more datasets of music. The Nintendo Entertainment System Music Database
(NES-MDB) (https://github.com/chrisdonahue/nesmdb; Donahue, Mao & McAuley, 2018)
is a dataset intended for building automatic music composition systems for the NES audio
synthesizer. It contains 5,278 soundtracks of 397 NES games. The soundtracks consist of a
combination of more than twomillion notes.We havemanually annotated the soundtracks
of a subset of it consisting of 133 games in five genres of video games: Role Playing Games
(RPG), Sport, Fighting, Shooting, Puzzle. In video games, the music affects the gamer
experience, and even if in a certain game there are different music genres, we are interested
in inspecting how the different types of music can share similar patterns with respect to the
video game genre that it is on. One more dataset consists of MIDI files of rock songs from
the following artists: Eric Clapton, Queen, Beatles, and Rolling Stones. We downloaded 89
songs for Eric Clapton, 219 songs for Queen, 783 songs for The Beatles, and 110 for The
Rolling Stones. The last dataset we considered consists of classical pieces.We havemanually
retrieved 64 MIDI files from the following composers: Albanez (24 pieces), Beethoven (29
pieces), and Mozart (21 pieces)

Then we designed a set of deep neural networks, based on transformers, to tackle
the classification and generation tasks. We show the results of our networks compared
against a set of baselines based on deep learning and machine learning approaches. The
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high performances of the transformers-based methods confirm their success even in this
domain. For the classification task, we show an analysis based on different metrics such
as the F1-score, accuracy calculated on the average of 10 iterations through the k-fold
cross-validation stratified method. For the generation task, we illustrate the evaluation
process used to validate our model through the generated song analysis. We present
our results for fifteen different automatically generated songs, knowing that the model
to generate these will start from a short excerpt, called seed, of a MIDI file present in
the database. For all fifteen songs, we verify their catchiness, their similarity, and their
consistency with the song genre from where the seed belongs. To verify the catchiness
we present the songs to five people from different musical backgrounds. To verify their
consistency with the genre we classify the newly generated songs with the classification
model we trained. Lastly, to calculate the similarity between two songs and their vector
representation, we used a measure presented in Uitdenbogerd & Zobel (1999), known as
the local alignment. This measure was first introduced as a bio-informatics procedure to
compare and align two or more amino acid sequences, DNA or RNA. Similar algorithms
biologically-inspired have already been used to confront music files (Bountouridis et al.,
2017). Through this algorithm, we can confront and know how similar two MIDI files are
based on the sequences of equal notes contained in both compositions.

In summary, our contributions can be listed as follows:

• We perform classification at fine and coarse-grained using three different datasets
consisting of a small number of tracks.
• We propose two neural networks based on Transformers for the classification and
generation of MIDI files.
• We carry out a k-cross validation for the classification task that shows how our proposed
neural network transformers-based outperforms the competitors in terms of several
metrics such as F1-score and accuracy.
• For the generated songs we perform a manual annotation involving five music experts
and an automatic assessment using the local alignment metric indicating the high quality
of the generated tracks.

The remainder of this article is organized as follows. In ‘Related Work’ we provide
related research on music classification and generation. ‘Background’ provides some
information about the MIDI format, how a MIDI file is represented, and what features it
contains. ‘Tasks Description’ illustrates the two tasks we tackle in this article. ‘The Adopted
Datasets’ describes the datasets we have used. ‘Extraction of Features’ discusses the feature
engineering we have performed to create the samples for the used deep neural networks.
‘The proposed deep neural networks’ details them and the transformers we have deployed
and used for the aforementioned tasks. ‘Experimental Evaluation’ shows the experiments
that we have conducted and analyses the obtained results providing a discussion on them.
Finally, ‘Conclusions’ ends the article and illustrates future directions where we are headed.
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RELATED WORK
Music genre recognition and classification are an important part of music information
retrieval. They have been deeply studied since 1990. In the first works, authors leveraged
signal frequency domain analysis methods (Li & Tzanetakis, 2003). Then, with the advent
of machine and deep learning technology, speech recognition and classification have done
excellent progresses (Xu et al., 2003). Today, they are both known by the term music genre
classification whose goal is the automatic classification of input audio in one of a predefined
set of classes. In this work, we deal with MIDI sounds. When dealing with MIDI files, some
considerations must be drawn: (i) MIDI files are much more compact than digital audio
files, (ii) their size is completely independent of playback quality, (iii) they do not take up
as much memory, disk space, or bandwidth, (iv) they can be embedded in web pages load
and play more quickly than their digital equivalents, (v) with high-quality samples, they can
even create a MIDI mock-up that sounds just as convincing as a real audio recording, (vi)
they are completely editable at note level, (vii) they can be converted to musical notation,
and vice-versa.

The first consideration to be made is that MIDI music genre classification methods
are largely based on generic text classification techniques. As such, Ruppin & Yeshurun
(2006) combined techniques of selection and extraction of musically invariant features
with classification using compression distance similarity metric. Others combined MIDI
files and audio features from MIDI, separately and merged together for MIDI music
genre classification using normalized compression distance to compute distances between
MIDI pieces (Cataltepe, Yusuf & Sonmez, 2007). For the same task, in Bernardo & Langlois
(2008) authors used the pitch levels and durations that describe each track to extract a set
of features that are used to train a classifier. Recently, Lisena, Meroño-Peñuela & Troncy
(2022) used graph embedding techniques to represent MIDI files as vectors. Basically,
MIDI files were represented as a graph and node2vec (Grover & Leskovec, 2016) was then
run to generate embeddings using random walks in the graph. The resulting vectors were
used for musical genre classification tasks using a Feed-Forward Neural Network.

As far as music generation is concerned, it is defined as the process of composing a
short piece of music with minimum human intervention. Examples of MIDI generation
are MuseNet (https://openai.com/blog/musenet/), a deep neural network that can create
musical compositions lasting four minutes, using ten distinct instruments and combining
rock, classical, and country genres. It is able to discover patterns of harmony, rhythm, and
style by learning to predict the next token in hundreds of thousands of MIDI files. As MIDI
files can be efficiently analysed as a sequence of text, it uses the transformer GPT2 (Radford
et al., 2019), well known in the Natural Language and Deep Learning communities to
predict the next token in a sequence. Kumar et al. (2022) presented a lightweight deep
learning-based method to generate MIDI jazz music. One instrument only was used for
the generation. In another contribution (Yang, Chou & Yang, 2017), researchers exploited
available prior knowledge, so that the model could generate melodies either from scratch
or by conditioning on the melody of previous bars. Moreover, the model could be extended
to generate multiple MIDI channels.
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Instead of focusing on transformers,Walter et al. (2021) employed generative adversarial
networks (GANs) to create music. They adopted the progressive approach towards
GANs and implemented it to train on symbolic music data. A user study was finally
conducted to evaluate the obtained results, and the Frechet Inception Distance metric was
employed.

Donahue et al. (2019) have tuned a model with the LAKH MIDI dataset and then
fine-tuned the model on the same NES dataset we have considered in this article. Then
they improved the performances of their model by proposing a pre-training technique
to leverage the information in a large collection of heterogeneous music. The difference
with our work, although, is that we employ a different feature extraction method which
completely changes the resulting generated samples.

Other existing deep learning tools for music generation are reported in the
following. Magenta (https://magenta.tensorflow.org/music-transformer; Huang et al.,
2019; Hawthorne et al., 2022) is a Google’s open-source deep learning music project that
employs a regular recurrent neural network (RNN) and two long short-term memory
networks (LSTM’s) to generate music. DeepJazz (https://github.com/jisungk/deepjazz)
uses a two-layer LSTM that learns from a MIDI file as its input source and creates
jazz music. BachBot (https://github.com/feynmanliang/bachbot/) is a research project at
Cambridge University that uses an LSTM to train itself on Bach chorales. Its goal is to
generate and harmonize chorales indistinguishable from Bach’s own work. FlowMachines
(https://www.flow-machines.com/) is a non-open source system that uses Markov
constraints to generate lead sheets based on the style of a composer in a database filled
with about 13,000 sheets. WaveNet (https://github.com/ibab/tensorflow-wavenet) is a
system designed by researchers at Google’s DeepMind and is based on Convolutional
Neural Networks. It uses raw audio as input and it can generate any kind of instrument.
GRUV (https://github.com/MattVitelli/GRUV) is a Stanford research project that, similar
to Wavenet, employs audio waveforms as input, with an LSTM and gate recorrent unit
(GRU) rather than convolutional neural network (CNN).

With respect to the existing state-of-the-art approaches, we perform classification on
datasets of different music styles and at fine and coarse-grained levels with the goal to
analyse how the classification is affected by the patterns of different genres. Moreover, we
designed a deep neural network where we employed the transformer architecture originally
proposed in Vaswani et al. (2017) and make use of all the instruments of the input MIDI
files for what the feature engineering is concerned. For the generation task, we designed one
more neural network where we embedded a transformer architecture known as GPT-2 and
proposed in Radford et al. (2019) mixed with the relative global attention mechanism as
illustrated inHuang et al. (2018) and implemented in Sigalov (2022). Lastly, to evaluate the
generated MIDI sequence we used human annotations for the catchiness of the generated
tracks, the fine and coarse-grained classification on the generated songs to check if the
predicted classes are compatible with the songs where the seeds have been chosen, and
an algorithm called local alignment, introduced in Uitdenbogerd & Zobel (1999), which
assesses the quality of the obtained tracks.
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BACKGROUND
MIDI is a standard protocol developed in the early ’80s and presented for the first time in
October 1981 at the Audio Engineering Society in New York.

A MIDI file consists of different blocks of data (chunks). There are two types of chunks:
• The header chunk. A MIDI file always begins with the header chunk which contains
general information about the MIDI itself. More in detail, the header chunk has the
following definition:

header_chunk= ‘‘MThd ′′+< header_length>+

< format >+< n>+< division>,

where the ‘‘MThd’’ is a string of 4 bytes that indicates the beginning of a MIDI file, the
header_length is a 4-byte field that contains the length of the chunk, format is a 2-byte field
that can specify three different formats (single track file format, multiple track file format,
multiple song file format), n is 2 bytes and indicates the number of tracks that follow and
division is a 2-byte field that represents (if positive) the units per beat.
• The track chunk. It stores the notes and contains sequences of time-ordered events
(MIDI and non-MIDI). It has the following definition:

track_chunk= ‘‘MTrk ′′+< length>+

< track_event > [+< track_event > ...],

where ‘‘MTrk’’ is a string of 4 bytes indicating the start of a track, length is 4 bytes and
includes the number of bytes in the track chunk following this number, and track_event
is a sequenced track event. Each track_event can represent three types of events: MIDI,
SysEx, Meta.

MIDI events
MIDI events describe how to play the music. The message related to these events has the
following structure:

Time (ticks) Event type value MIDI Channel Parameter 1 Parameter 2
variable-length 4 bits 4 bits 1 byte 1 byte

According to this structure, each message starts with a timestamp indicating the amount
of time to wait before the event starts. It indicates that the event should occur the specified
amount of MIDI ticks after the previous event. A MIDI tick lasts an interval time value
defined by the time division. The time division of aMIDI file, also known as the ‘‘resolution
of a MIDI file’’, indicates the mapping between a MIDI tick and time in microseconds.

The value of the ‘‘resolution of a MIDI file’’ is obtained from the equation:

resolution= (microseconds per beat )/(ticks per beat ) (1)
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1For a more detailed description of the
‘‘resolution of a MIDI file’’ please check
https://www.recordingblogs.com/wiki/time-
division-of-a-midi-file).

2For a more detailed description of
the Standard MIDI-File format please
check the following site http://www.
music.mcgill.ca/~ich/classes/mumt306/
StandardMIDIfileformat.html.

The ‘‘ticks per beat’’ value is contained within the division field of the header chunk. The
variable ‘‘microseconds per beat’’ may be specified by aMETA event which we will describe
later. Otherwise, it is set to 500,000microseconds by default. The result indicates howmany
microseconds a tick should last.1

After the Time field, it follows a value determining which type of event should start
(Event Type Value), and in which of the 16 channels the event should be reproduced (MIDI
Channel). The message ends with two optional parameters which contain information for
the event such as the note number, or the program number.

There are several possible values of event types contained in the Event Type Value field.
In the following, we will report the four most important and pertinent to our study.2

•Note on. This type of message describes the moment a note, represented as an integer
between 0 and 127, starts playing. The message comes with information about the key
velocity (the volume of the note), the channel in which the note will be reproduced, and a
timestamp defining how many ticks to wait before the message is executed. A description
of the message of type Note on is the following:

Message Time (ticks) Channel Note Number Velocity
NOTE ON t 0–15 0–127 0–127

•Note off. Similarly to Note on, it defines when a note, in a channel, should stop playing.
In the following a description of this type of message is reported:

Message Time (ticks) Channel Note Number Velocity
NOTE OFF t 0–15 0–127 0–127

•Program Change. In the MIDI language, a program is a synonym for an instrument used
to play the note. This event is used to select the instrument that will play the notes in a
channel. A structure of such a type of message is described in Table 1.
•Pitch Bend. This event is used to change the pitch value of a MIDI Channel. The pitch
value affects all the notes on the current message. A structure of such a type of message is
reported in Table 2.

SysEx events
System-exclusive events are the second category of event (SysEx) and are employed to
command MIDI hardware or software that needs unique data in accordance with the
manufacturer’s instructions. An ID is included in every SysEx event that identifies the
manufacturer’s product that is the intended recipient. Three types of SysEx messages
(Normal, Divided, and Authorization), are used to deliver data in a single event, across
many events, or to authorize the transmission of particular MIDI messages.
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Table 1 Structure of the program change message.

Message Time
(ticks)

Channel Program
Number

PROGRAM CHANGE t 0–15 0–127

Table 2 Structure of the Pitch Bendmessage.

Message Time
(ticks)

Channel LSB MSB

PITCH BEND t 0–15 0–127 0–127

META events
The third, and last, type of messages that can be included in the track_event is the META
events. These are also known as non-MIDI events.Usually, they send additional information
about the MIDI file, such as text, copyright, sequence/track name, instrument name, lyrics,
and so on. One important type of META event is the MIDI set tempo. This event sets
the tempo of a MIDI sequence in terms of microseconds per quarter note defining the
parameter value for the resolution of the MIDI file as indicated in Eq. (1).

TASKS DESCRIPTION
In this article, we tackle two tasks for MIDI songs: classification and generation.

Classification
The classification task we faced is multi-class single-label, that is each MIDI file can be
associated with one class only (that is why single-label) among a list of different classes
to choose from (that is why multi-class). We perform two types of classification: one
fine-grained and the other coarse-grained. The reason to have defined the two types of
classification is to understand whether MIDI patterns from different composers of the
same genre are more difficult to recognize than MIDI patterns from different genres.
Therefore, for the first type of classification we analyse (fine-grained), we perform a
separate classification on every single dataset we have collected to identify the class or
author of each track in the test set. In this case, the task is intuitively harder because the
classifier will have to detect peculiarities within MIDIs of the same genre (i.e., identifying
the authors of different rock songs). The other classification (coarse-grained) is performed
on the combination of all the datasets we have collected where each dataset corresponds
to a different class to be identified. In such a case the classification should be easier as the
MIDI patterns should be more similar among tracks of the same dataset and more different
between tracks of different datasets (i.e., identifying whether a certain song is a rock or
classical or other musical genres).

MIDI Generation
Text generation is a task in computational linguistics whose aim is to generate natural
language texts which can be correct both syntactically and semantically. We have mapped

Angioni et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1410 9/32

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1410


theMIDI generation as a text generation taskwhere the generated notes should be consistent
with the input seed. The idea is to treat a MIDI track as a simple text, with tokens for note
values, note duration, and for time, which denotes when the related note should start
playing.

We have therefore used a language model provided by the transformer-based neural
network architecture (in ‘The proposed deep neural networks’ we will provide further
details about that). The generated music sequences are the result of the completion of
selected short initial parts of music files in the database, with which the network has been
trained. This sequence is completed in order to generate a MIDI with a suitable structure,
and consistency with the track from which the short initial part is extracted. In presence
of a small training set, the generated sequences have higher chances to be more similar to
the ones used as a seed, so the resulting MIDI can be a revisitation of the seed and needs
to maintain consistency and structure, while at the same time being original respect to the
sequence from where the initial part was extracted.

THE ADOPTED DATASETS
In this section, we will describe the datasets we have adopted for classification and
generation.

Nintendo Entertainment System (NES) database
TheNES dataset has been introduced inDonahue, Mao & McAuley (2018). It is intended for
building automatic music composition systems for the NES audio synthesizer. It contains
5278 songs from the soundtrack of 397 NES games.

The database can be considered a structurally homogeneous collection of MIDI files
based on the song type it contains. The type is called ‘‘Chiptune‘‘ or ‘‘8-bit‘‘, which is
firmly connected to the history of video games, and its style is strongly influenced by the
sound limitations that the video games of the late eighties, and early nineties, posed to
developers and composers. This origin gives the genre unique features, recognizable by
iconic synthesized sounds traditionally made using a ‘‘Programmable Sound Generator‘‘
(PSG), an integrated circuit capable of generating sound waves and synthesizing different
waveforms. Although the Chiptune can interpret countless musical genres, its timbre is
immediately recognizable. From Super Mario and Castlevania to Shovel Knight and Fez,
‘‘Chiptune‘‘ music is still alive to this day.

The 5,278 songs include all the music from a specific video game, from long theme songs
to short sound effects played when a certain action takes place in the game (for instance, a
short game over sound). In our article, we decided to exclude the MIDI files containing less
than 128 note events, keeping for our purposes only the long theme songs. The number
of MIDI files with less than 128 note events was 1,631. The remaining 3,636 MIDI files
(which correspond to 397 resulting NES games) have been divided into chunks of the exact
length of 128 melody chords, each one containing four integers (channel velocity, time,
duration, pitch). Thus, a chunk after the post-processing is 512 tokens long and a song
can be subdivided into a different number of chunks. In the following, we will show some
statistics from these 3,636 MIDI files. In particular, Table 3 shows the average duration of
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Table 3 Statistics on NES soundtracks length.

Average
Duration

Total
Duration

Duration
Standard
deviation

49 s 140,253 s 57 s

Minimum
duration

Maximum
duration

2 s 1,517 s

Table 4 Number of MIDI tracks per NES videogame genre.

RPG Sports Fighting Shooting Puzzle

746 161 218 443 242

Table 5 Number of MIDI files per rock artist.

The
Beatles

Queen Eric
Clapton

The
Rolling
Stones

782 218 89 110

the NES MIDIs, their overall duration, the standard deviation of their duration, and the
minimum and maximum duration.

We identified five main categories of NES video games: Role Playing Games (RPG),
Sports, Fighting, Shooting, and Puzzle. Three annotators (players of old video games)
manually labeled 1,728 of the 3,636 NES soundtracks based on the main category of the
video games they came from. Each MIDI was associated with one of the five classes. There
were never cases of disagreement. Table 4 illustrates the number of MIDIs per category.

Moreover, in Fig. 1 we show the number of MIDI files split by the number of played
instruments. Basically, there are 137 soundtracks of NES games with one single instrument,
969 with 2 different instruments, and 2,530 with three.

Finally, in Fig. 2 we indicate the number of note events of the entire collection with
respect to each instrument. Basically, piano, bass, and drums are recurrent instruments in
NES soundtracks.

Rock MIDI database
We created a small collection of instrumental rock MIDIs from four different artists for a
total of 1,199 songs, divided as indicated in Table 5. MIDI files have been extracted from
PianoMidi (http://www.piano-midi.de/) and MAESTRO (https://magenta.tensorflow.org/
datasets/maestro).

In the following, we will show some statistics from these 1,199 songs. In particular,
Table 6 shows the average duration of the rock MIDIs, their overall duration, the standard
deviation of their duration, and the minimum and maximum duration.
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Figure 1 Distribution of instruments in NESMIDI files.
Full-size DOI: 10.7717/peerjcs.1410/fig-1

Figure 2 Number of note events per instrument in the NES dataset.
Full-size DOI: 10.7717/peerjcs.1410/fig-2

In Fig. 3 we show the number of MIDI files split by the number of played instruments.
Finally, in Fig. 4 we indicate the number of note events of the rock collection with respect

to each instrument. Basically, piano, guitar, bass, and drums are recurrent instruments of
the rock MIDI dataset.

Classical MIDI database
Finally, we created a small collection of classical music MIDI files from three different
composers for a total of 101 songs, divided as illustrated in Table 7. MIDI files have
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Table 6 Statistics on rock songs length.

Average
Duration

Total
Duration

Duration
Standard
deviation

230 s 274,132 s 583 s

Minimum
Duration

Maximum
Duration

22 s 19,652 s

Figure 3 Distribution of instruments in the rock dataset.
Full-size DOI: 10.7717/peerjcs.1410/fig-3

Table 7 Number of MIDI files per classical composer.

Albanex Beethoven Mozart

28 42 31

been extracted from Kunstderfuge (https://www.kunstderfuge.com/) and ClassicalArchives
(https://www.classicalarchives.com/midi.html).

Table 8 shows the average duration of the classical MIDIs, their overall duration, the
standard deviation of their duration, and the minimum and maximum duration.

The reader notices that all the note events in these MIDI files are associated with the
piano. There are a total of 330,012 note events.

EXTRACTION OF FEATURES
Wehave used the library TMIDIX (https://asigalov61.github.io/tegridy-tools/TMIDIX.html)
to handle MIDI files. The library is able to read and create these files and has all the
functionalities to extract the information previously illustrated. The TMIDIX library
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Figure 4 Number of note events per instrument in the rock dataset.
Full-size DOI: 10.7717/peerjcs.1410/fig-4

Table 8 Statistics on classical songs length.

Average
Duration

Total
Duration

Duration
Standard
deviation

384 s 24,632 s 271 s

Minimum
Duration

Maximum
Duration

95 s 2,011 s

Table 9 Structure of opus.

Time
(ticks)

Tracks # Optional
Tracks

Integer Events List Events List
(Program Change, Note On, Note Off)

provides functions that create a structure called opus, which contains the sequence of MIDI
events for each track in the file and the ‘‘resolution of the MIDI’’. We are only interested
in extracting this type of events since they specify the musical instructions. In Table 9 the
structure of opus is shown:

An example of an opus value is the following:

[ 96, [ # track 0:

[‘program_change’, 0, 1, 8],

# and these are the events

[‘note_on’, 5, 1, 25, 96],
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[‘note_off’, 96, 1, 25, 0],

[‘note_on’, 0, 1, 29, 96],

[‘note_off’, 96, 1, 29, 0],

], # end of track 0

]

Time values (0, 5, 96, 0, 96) indicate the MIDI ticks that each related event should wait
to occur after the previous event. Meanwhile, the first 96 value indicates the number of
ticks per quarter in this example MIDI.

An important step is to transform all the time values previously mentioned from ticks to
milliseconds (or microseconds). We consider a base value of 400 ms per quarter for each
processed MIDI; in this way, we obtain the milliseconds’ value for each tick (in this case
400/96= 4,16). With this value, we recalculate the other times. For instance, since the first
‘Note On’ message has five ticks, and since each tick is equal to 4,16 ms, its new timing
will be 5*4,16 = 20,8 (21 rounded). In order to perform this task, we map all the time (or
ticks) values in the opus structure to millisecond values obtaining the following structure:

[1000, [# track 0:

[‘set_tempo’, 0, 1000000],

[‘program_change’, 0, 1, 8],

[‘note_on’, 21, 1, 25, 96],

[‘note_off’, 400, 1, 25, 0],

[‘note_on’, 0, 1, 29, 96],

[‘note_off’, 400, 1, 29, 0]]]

Here, we added the set_tempo event to further redefine the times’ value to transform
one tick in one millisecond. The set_tempo event resets the value of microseconds per beat
to 1,000,000 and the first value in the structure (1,000) represents the division value from
the MIDI header. These values will be used to calculate the correct tick as seen in Eq. (1).
According to the equation, we obtain 1,000,000/1000 = 1,000 ms; therefore, if we convert
the results, one tick will correspond to 1,000 ms, which is equal to 1 millisecond.

The resulting opus structure is then transformed into another format, called score. The
score format differs from the opus format for the following characteristics:

• Times are expressed with an absolute number of ticks calculated from the beginning of
the track. For instance, we can observe the second ‘Note’ event that now has 421 as a
time value and not 400 as before.
• The pair of ‘‘Note On’’ and ‘‘Note Off’’ events in the opus format are combined into a
single note event with the following structure:

[’note’, start time, duration, channel, pitch, velocity ]
The score value obtained from the previous opus structure is the following:

[1000, [# Track 0

[‘set_tempo’, 0, 1000000],

Angioni et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1410 15/32

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1410


[‘program_change’, 0, 1, 8],

[‘note’, 21, 400, 1, 25, 96],

[‘note’, 421, 400, 1, 29, 96]]]

]

The score format will be further processed to obtain the melody chord format where we
will have a new representation of the note events and we will discard all the other event
types different than the ‘‘Program change’’.

From the ‘‘Program change’’ event we extract the channel (1 in the example) and the
program number (8 in the example) that set which channel and which instrument that
follows this message will be used for playing.We compare the extracted instrument number
with a list of default instruments set in the TMIDIX library: piano, guitar, bass, violin,
cello, harp, trumpet, clarinet, flute, and choir. If a match is found, then the note channel
value is set to the index of the matched instrument, otherwise, the note channel value is set
to a default value.

If a note has a channel value higher than 9 (the first channel value is 0), the note is
discarded for the sake of simplicity as the dimension of the instruments defined within the
TMIDX library is 10. After these steps, we obtain an intermediate representation having
the following form:

[ Event type,Start Time,Duration,Channel,Pitch,Velocity,Program Number]
From the previous score format we therefore obtain:

[[’note’, 21, 400, 0, 25, 96, 8, ’note’, 421, 400, 0, 29, 96, 8]]
From here we recalculate the timings (start time and duration) dividing them by 16 and

32 as a normalization step and obtaining, respectively, 1 as the new start time (21/16) and
26 (421/16). For the duration, we divide by 32 and obtain 12 (400/32) for both the note
events:

[[’note’, 1, 12, 0, 25, 96, 8, ’note’, 26, 12, 0, 29, 96, 8]]
We do not want to process songs with too few note events since they can add noise to

the training phase and are not representative. Thus, in this project, we keep songs with at
least 128 note events.

The melody chord has the following structure:
Melody Chord = [Channel velocity, Time, Duration, Pitch]

Channel velocity combines the information of the channel representing the instrument
that should play and its velocity, multiplying the channel value by 10 and adding the
velocity divided by 16 for each note event. In the previous example, taking into account
the score structure explained before, the channel velocity becomes 6, corresponding to (0
* 10) + (96/16).

The time represents the moment when the note should start playing and is obtained
from the difference between the current note event time we are processing and the time
from the previous note event plus 128. The duration of the note is the number of ticks that
should last and corresponds to the known duration value present in the opus structure
plus 256. The pitch value is obtained from the last pitch value plus 384.
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3Here the previous note event is considered
to have time 1.

The summation by 256 and 384 is intended to be a normalization technique allowing
us to scale all the values in the melody chords between 0 to 512.

From the previous opus structure we obtain the followingmelody chords, where each list
represents a note event:

Melody Chords = [[6, 1283, 268, 409], [6, 153, 268, 413]]
Lastly, we decompose the melody chords representation to have a single list of integers

representing the features extracted from the MIDI as follows:
[6,128,268,409,6,153,268,413]
Thus, a certain song will consist of different note events where each one will be

represented by four numbers. The neural nets we have designed and all the used baseline
methods will receive as input this integer representation for a total length of 512 integer
tokens in each sample for the classification and 1,024 for the generation, with values in a
range between 0 and 512.

THE PROPOSED DEEP NEURAL NETWORKS
The developed network for classification
The network we have employed is based on a transformer architecture. The first layer of
the network is the input layer that can receive data. Specifically, in our case, the input
will be a MIDI music excerpt, represented as a sequence of tokens. Each token can have
one of 512 different values corresponding to the dictionary size. Next, we have the token
and position embedding layer with an embedding dimension of 256. This layer encodes
position information, allowing the network to understand the temporal structure of the
music sequence. This is particularly important for music, where the order and timing of
notes and events are crucial to the overall sound and feeling of the piece. The encoded
vector is taken in input by the transformer block. At the start of the transformer block we
have the multi-head attention layer, which enables the model to combine knowledge from
different dependencies, being especially useful for dealing with long-term dependencies in
music. Specifically, we select eight heads, meaning that the layer produces eight different
outputs capturing different aspects of the input sequence (e.g., long-range vs short-range).
The result of each head is concatenated, and using a feed-forward with a dimension
of 64, we apply a linear transformation to the concatenated result, to produce a single
representation of the sequence. This representation is the output of the transformer block
that is passed to a dropout layer that randomly drops out some of the values, which helps
to prevent overfitting by forcing the model to learn more robust representations. Then
we have a dense layer applying a ReLu activation function to the output of the dropout
layer, which further introduces non-linearity to the model. The output is passed to another
dropout layer and in the end, reaches a final dense layer with a softmax as an activation
function. The softmax function converts the output of the previous layer into a vector of
dimension K, in which K are the different classes. Each element of the vector will contain
the probability of the input sequence belonging to the particular class. During training, the
network adjusts the weights and biases of the dense layer to minimize the implemented
categorical cross-entropy loss between the predicted probability distribution and the true
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Figure 5 Architecture of the neural network used for the classification task.
Full-size DOI: 10.7717/peerjcs.1410/fig-5

label distribution for each MIDI music excerpt. The cross-entropy loss measures the
dissimilarity between the predicted probability distribution and the true label distribution.
We set the other important hyperparameter value of the learning rate to have a rate decay
factor based on the formula (final learning rate/initial learning rate)∗ (1/epochs) with
final learning rate value equal to 0.000001, initial learning rate value equal to 0.0001,
and a number of epochs equal to 20. The architecture of the network we employed for
classification is shown in Fig. 5. For the development of such a network, we used the Keras
framework (https://keras.io/).

The developed network for generation
The network we employed for the generation task is based on transformer technology. In
particular, we made use of the GPT-2 (Generative Pretrained transformer) architecture
mixed with the Relative Global Attention (RGA) as implemented in Sigalov (2022),
from where we downloaded the pre-trained model that was trained on the Full
LAKH MIDI dataset converted to a MIDI output format (nine instruments + drums)
(https://github.com/asigalov61/LAKH-MuseNet-MIDI-Dataset) Raffel (2016). The used
format is coherent to what we discussed in ‘Extraction of Features’.

More precisely, the pre-trained model was trained with 260.000MIDI excerpts for about
44 h on dual A6000 GPUs with 28 as batch value.

The self-attention mechanism of the original transformer does not explicitly model
any positional information in the input data, so the RGA (also called Relative Position
Representations), implemented in the pre-trained model we presented below, extends the
self-attention mechanism to efficiently consider this positional information.

The RGAmechanism, introduced in Shaw, Uszkoreit & Vaswani (2018), extends the self-
attention mechanism to model relative positions between tokens in the input sequence. It
does this by introducing additional information into the attention calculation, specifically
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Figure 6 Architecture of the neural network used for the generation task.
Full-size DOI: 10.7717/peerjcs.1410/fig-6

the relative position of each token with respect to a fixed reference point. This allows the
model to capture more nuanced relationships between tokens in the input sequence. To
use RGA, each token in the input sequence is associated with a relative position embedding,
which encodes the distance between that token and a reference point. The reference point
can be any token in the input sequence, but in practice, it is often chosen to be the first or
last token (in ourmodel the reference is the first token). These relative position embeddings
are then used in the attention calculation, in addition to the standard self-attention scores.
In the context of generating MIDI music, using RGA instead of standard self-attention may
help the model to capture more complex relationships between notes, such as patterns or
motifs that repeat at different points in the sequence. This could lead to amore sophisticated
and interesting music generation.

The architecture of the network we have used is shown in Fig. 6. The first embedding
layer takes as input data 1,024 tokens as the maximum dimension and, since each token
may have one of 512 different values, we use for each of them an embedding dimension of
512, defined by the output shape of the embedding layer (1,024, 512).

Then we have the dropout layer, which is necessary to prevent the overfitting of the
neural network. Usually, the dropout layers randomly set a portion of the input to zero.
Specifically, in our neural network this portion is set to 10% of the input units. Next, to
improve the stability and performance of the model, we have inserted three normalization
layers. Then, in the architecture, we can observe the presence of transformer blocks. These
blocks are the main component of transformer-based neural networks. Each transformer
block consists of several layers, includingmulti-head attention, normalization, feedforward,
and dropout. The multi-head attention layer allows the network to attend to different parts
of the input sequence simultaneously and has inside a feedforward layer that applies a
nonlinear transformation to each input element. In our network, we have eight transformer
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4The padding is performed also for the
classifications on the other datasets.

blocks, each with an output dimension of 512 for the linear layers. The final layer of the
network is a dense layer with a softmax activation function. This layer takes the output of
the last transformer block and maps it to a probability distribution over the possible next
tokens, selecting the one with the highest probability score. Overall, our model is designed
to take a sequence of up to 1024 tokens and generate a probability distribution over the
possible next tokens. The use of transformer blocks allows the network to capture complex
patterns in the input sequence, while the normalization layers and dropout layer help to
prevent overfitting and improve performance.

For the fine-tuning, the input songs, processed as seen in ‘Extraction of Features’, have
been given to the network in chunks of a max length of 512 integer tokens with a batch size
of 4. Note that although the network can handle sequences of up to 1,024 tokens, we use
512 as length value for fine-tuning on our dataset due to computational limitations. We
trained for only one epoch for each dataset due to the time-consuming task; within this
time the network weights, already trained on the LAKH MIDI, should be able to change
according to the dataset we are fine-tuning on, specializing each time towards a different
music genre.

EXPERIMENTAL EVALUATION
In this Section, we will illustrate the evaluation procedure we have carried out. First, in
‘Results on Classification’ we will show the results we have obtained for the classification,
and then in ‘Results on Generation’ those obtained for the generation.

Results on classification
As previously mentioned, the classification task has been carried out at fine and coarse-
grained levels. The former was performed on each of the three dataset: NES, rock,
and classical. The conducted experiments are based on the comparison of the results
obtained by our proposed neural network with other machine learning baselines (k-
nearest neighbour, random forest, and support vector machines) and other deep learning
approaches (Long short-term memory LSTM Jing (2019) and Convolutional Neural
Networks CNN (https://cezannec.github.io/CNN_Text_Classification/)). The strategy used
to measure the system performances is the k-fold cross-validation stratified, implemented
through SciKit Learn (https://scikit-learn.org/stable/). The k-fold technique allows us to
accurately validate the performance of our model by dividing the dataset at each iteration
into the following non-overlapping chunks: test set (twenty percent of the dataset), training
set (eighty percent of the dataset). The training set is further split into the actual data used
for training (90 percent) and a validation set (10 percent)

NES dataset
In the NES dataset, we extracted a total of 1728 labeled tracks. Each track is represented by
different arrays (also referred to as samples) of a fixed length of 512 tokens (integer) for a
total of 13.473 samples. If the last sample of a certain track is less than 512 tokens then it is
padded with 0s.4 Considering the class of the original track, the resulting label distribution
of these samples is shown in Table 10.
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Table 10 Classes distribution of the samples for the NES dataset.

RPG Sports Fighting Shooting Puzzle

5,251 750 1,604 4,397 1,471

Table 11 Classification results in terms of accuracy and ROC AUC score on the NES dataset averaged
over all the classes.

Accuracy
score

ROC AUC
score

Nearest Neighbour 0.40 0.53
Random Forest 0.42 0.54
Support Vector Machine 0.26 0.50
LSTM 0.65 0.68
CNN 0.62 0.65
Transformer-based 0.73 0.78

Table 12 Classification results in terms of F1-score on the NES dataset.NN stands for nearest neighbor,
RF for random forest, SVM for support vector machine and T-based for transformer-based.

RPG Sport Fighting Shooting Puzzle Macro
Average

Weighted
Average

NN 0.45 0.008 0.06 0.49 0.05 0.21 0.34
RF 0.42 0.004 0.002 0.34 0.01 0.15 0.27
SVM 0.35 0.08 0.16 0.29 0.12 0.20 0.27
LSTM 0.72 0.62 0.64 0.74 0.60 0.65 0.72
CNN 0.70 0.61 0.59 0.71 0.58 0.61 0.67
T-based 0.78 0.64 0.69 0.79 0.60 0.70 0.75

At each iteration of the k-fold cross-validation, we have 9,700 samples for the training
set, 1,078 for the validation set, 2,695 for the test set. The sets are created stratified, meaning
that we preserve the same proportions of samples in each class as observed in the original
dataset and for each set. This observation holds for all the other classification experiments
we have carried out at fine and coarse-grained levels.

Table 11 indicates the average accuracy score and the ROC AUC score whereas Table 12
illustrates the F1-score for each class of NES dataset and each adopted method. The reader
can notice the higher performances of the transformers against the baseline approaches.
Moreover, for the transformer approach, we indicate in Fig. 7 the confusion matrix
including the summed values across all the folds.

In Table 12, we present the results (in terms of F1-score) of the k-cross-validation for
each class, for the baseline methods we implemented, and the adopted solution using the
transformer we employed. The reader can notice how our approach outperforms all the
other machine learning baselines on each class of the NES dataset and on average (at macro
and weighted levels).
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Figure 7 Confusionmatrix summed across all the folds for the NES dataset using the adopted trans-
formers model.

Full-size DOI: 10.7717/peerjcs.1410/fig-7

Table 13 Classes distribution of the samples for the rock dataset.

Eric
Clapton

Queen The
Beatles

the Rolling
Stones

3,839 7,799 23,123 5,359

Rock dataset
In the rock dataset, we have a total of 1,199 labeled tracks. Each track is represented
by different arrays of a fixed length of 512 integer tokens for a total of 40,120 samples.
Considering the classes of the original track, the resulting label distribution of these samples
is shown in Table 13.

At each iteration of the k-fold cross-validation we have 25,676 samples for the training
set, 6,420 for the validation set, and 8,024 for the test set.

The average accuracy score and the ROC AUC score are depicted in Table 14. The
F1-score for each class of the Rock dataset and each adopted method is reported in Table
15. The performances of the transformers are higher than those of the baseline approaches.
Figure 8, moreover, indicates the confusion matrix of the summed values across all the
folds for the classification performed with the transformer.

Results of F1-score of the k-cross validation are indicated in Table 15. Each class is
reported together with the F1-score of each baseline method and our proposed solution.
The reader can observe how our transformer-based approach outperforms all the other
baselines in each class and on average (at macro and weighted levels).
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Table 14 Classification results in terms of accuracy and ROC AUC score on the rock dataset averaged
over all the classes.

Accuracy
score

ROC AUC
score

Nearest Neighbour 0.54 0.57
Random Forest 0.61 0.63
Support Vector Machine 0.52 0.50
LSTM 0.83 0.86
CNN 0.87 0.89
Transformer-based 0.94 0.95

Table 15 Classification results in terms of F1-score on the rock dataset.

Eric
Clapton

Queen The
Beatles

The
Rolling
Stones

Macro
Average

Weighted
Average

Nearest Neighbour 0.16 0.32 0.69 0.23 0.35 0.51
Random Forest 0.11 0.38 0.79 0.43 0.43 0.60
Support Vector Machine 0.12 0.27 0.47 0.15 0.25 0.36
LSTM 0.89 0.90 0.92 0.92 0.91 0.92
CNN 0.87 0.86 0.90 0.90 0.89 0.91
Transformer-based 0.92 0.92 0.96 0.94 0.93 0.94

Figure 8 Confusionmatrix summed across all the folds for the Rock dataset using the adopted trans-
formers model.

Full-size DOI: 10.7717/peerjcs.1410/fig-8
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Table 16 Classes distribution of the samples of the classical dataset.

Albanez Beethoven Mozart

414 1,293 923

Table 17 Classification results in terms of accuracy and ROC AUC score on the classical dataset aver-
aged over all the classes.

Accuracy
score

ROC AUC
score

Nearest Neighbour 0.58 0.61
Random Forest 0.73 0.81
Support Vector Machine 0.50 0.56
LSTM 0.81 0.82
CNN 0.84 0.86
Transformer-based 0.86 0.88

Table 18 Classification results in terms of F1-score on the classical dataset.

Albanez Beethoven Mozart Macro
Average

Weighted
Average

Nearest Neighbour 0.18 0.66 0.51 0.45 0.53
Random Forest 0.83 0.83 0.66 0.77 0.77
Support Vector Machine 0.30 0.61 0.42 0.44 0.50
LSTM 0.73 0.82 0.85 0.82 0.84
CNN 0.70 0.81 0.82 0.78 0.80
Transformer-based 0.78 0.88 0.87 0.84 0.86

Classical dataset
In the classical dataset we have a total of 101 labeled tracks. Each track is represented
by different arrays of a fixed length of 512 integer tokens for a total of 2630 samples.
Considering the class of the original track, the resulting label distribution of these samples
is shown in Table 16.

At each iteration of the k-fold cross-validation we have 1,893 samples for the training
set, 211 for the validation set, 526 for the test set.

Table 17 shows the average accuracy score and the ROC AUC score. Table 18 illustrates
the F1-score for each class and utilized methods. The reader can observe the superior
performances of the transformers against the baseline approaches. Furthermore, for the
transformer approach, we depict in Fig. 9 the confusion matrix including the summed
values across all the folds.

Coarse-grained classification
To analyse the performances of our model at coarse-grained level, we took a sample of
tracks from each of the three datasets previouslymentioned and performed the classification
using k-cross validation with k set to 5. The data is represented by different arrays of a
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5The generated songs can be freely
downloaded from http://192.167.149.18/
data.tar.bz2.

Figure 9 Confusionmatrix summed across all the folds for the classical dataset using the adopted
transformers model.

Full-size DOI: 10.7717/peerjcs.1410/fig-9

Table 19 Classes distribution of the samples for the coarse-grained classification.

NES Rock Classical

732 2,252 2,609

fixed length of 512 integer tokens for a total of 5,593 samples. Considering the classes of
the original track, the resulting label distribution of these samples is shown in Table 19.

At each iteration of the k-fold cross-validation, we have 4,026 samples for the training
set, 448 for the validation set, and 1,119 for the test set.

Table 20 illustrates the average accuracy score and the ROC AUC score. Furthermore,
Table 21 shows the F1-score for each dataset and adopted method. Even for the coarse-
grained level case, the reader can observe the superior performances of the transformers
against the baselines. Finally, for the transformer approach, we indicate in Fig. 10 the
confusion matrix including the summed values across all the folds.

Results on generation
We adopted a similar language model proposed in Donahue et al. (2019) and fine-tuned it
on each different datasets and therefore obtained three different models. We used a Tesla
P6 GPU for the fine-tuning process. The new sequences are generated starting from a small
excerpt from the intro of a random track present in one of our datasets. This excerpt is
called seed. The model will complete the seed based on the present instruments and notes.
Given the relatively small dimension of each dataset used for the fine-tuning, we expect
that the final generated track will be a sort of revisitation of the original one where the seed
comes from. We generated 15 different songs,5 five from each generative model, and asked
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Table 20 Classification results in terms of accuracy and ROC AUC score on the inter-dataset task aver-
aged over the three classes (the three datasets in this case).

Accuracy
score

ROC AUC
score

Nearest Neighbour 0.78 0.75
Random Forest 0.81 0.79
Support Vector Machine 0.81 0.79
LSTM 0.92 0.91
CNN 0.89 0.86
Transformer-based 0.94 0.93

Table 21 Classification results in terms of F1-score at coarse-grained level.

NES Rock Classical Macro
Average

Weighted
Average

Nearest Neighbour 0.14 0.77 0.93 0.61 0.76
Random Forest 0.26 0.78 0.98 0.67 0.80
Support Vector Machine 0.22 0.82 0.97 0.67 0.81
LSTM 0.82 0.92 0.97 0.89 0.92
CNN 0.79 0.86 0.90 0.87 0.85
Transformer-based 0.84 0.94 0.99 0.92 0.95

Figure 10 Confusionmatrix summed across all the folds for the coarse-grained level classification us-
ing the adopted transformers model.

Full-size DOI: 10.7717/peerjcs.1410/fig-10

five music composers to verify their catchiness with respect to the class of the seed they
were generated from. We used a scale of three values (Low, Medium, High) to represent
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Table 22 Catchiness average value of the five experts on the 15 generated tracks.

Generated
Track ID

Seed Average
Catchiness
Level

1 Rock 2.8
2 Rock 3
3 Rock 3
4 Rock 2.8
5 Rock 3
6 Classic 2.4
7 Classic 3
8 Classic 2.8
9 Classic 2.6
10 Classic 3
11 NES 3
12 NES 3
13 NES 3
14 NES 3
15 NES 3

the catchiness. We then mapped the scale to the values (1, 2, 3) and computed the average.
Table 22 shows such average results of the five experts on the 15 generated tracks. The
Seed column refers to the dataset of the song containing the seed. As it is evident from the
table, the catchiness level of all the songs is always close to 3 meaning that in the worst-case
scenario (just the track with ID 6) three annotators rated the catchiness with Medium and
two annotators rated it with High.

Moreover, we evaluate our generation process by comparing the sequence created by
our model with the original sequence representing the song containing the seed. For such a
purpose, we employed the local alignment score. The value for such a metric lies within the
[0,1] range: 1 when the similarity of the two songs is very high and 0 when it is very low.
The reader notices that the seed was not included in the computation. The related results
are depicted in Table 23 and indicate that each generated song is different enough from the
original seed. This implies that the generated songs consist of patterns not present within
the training set.

Then, we employed the transformer-based models used for the fine and coarse-grained
classification to classify the 15 songs. The goal was to verify whether the generated songs
belong to the same class of the track where the seed was selected from (fine-grained) or at
least to the same dataset (coarse-grained). Table 24 shows the F1-score for the fine-grained
classification. The reader notices that the fine-grained classification performs well for each
of the three datasets. The F1-score for NES is the lowest because NES is the dataset with the
highest number of classes to guess. Then the rock dataset is next and finally the classical.
The F1-score for the coarse-grained classification is 0.95 showing a very high consistency
of the generated songs with respect to the genre of their seeds.
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Table 23 Local alignment values on the 15 generated songs.

Generated
Track ID

Local
Alignment
value

1 0.17
2 0.2
3 0.1
4 0.1
5 0.12
6 0.24
7 0.1
8 0.20
9 0.1
10 0.1
11 0.12
12 0.10
13 0.25
14 0.8
15 0.6

Table 24 F1-score for fine-grained classification of the 15 generated songs (five for NES, five for rock,
and five for classic).

Dataset used
to generate
the song

F1-score

NES 0.4
Rock 0.6
Classical 0.8

CONCLUSIONS
In this article, we have performed classification and generation tasks on MIDI music. First,
we have described the MIDI file and how it is structured. Then we described the datasets
we collected: NES soundtracks, rock music, and classical pieces. In each of them, we tested
a classification and generation task. The classification has been performed at fine and
coarse-grained levels. At fine-grained level meaning that the classifier had to identify the
labels of the MIDI samples for each dataset (i.e., categories of games for NES, which band
the underlying rock sample belongs to, and which composer the underlying classical sample
belongs to). Next, we merged together the three datasets and addressed a classification task
at coarse-grained level. In such a scenario, the classifier had to predict one of the three
classes for each test sample (NES, rock, classic). To actually perform the classification, we
made use of a transformers-based neural network that has been compared against different
classical machine learning and deep learning baselines. In each case of classification, the
transformers-based approach outperformed the competitors. Finally, we also tackled the
generation task in each dataset. The produced samples were tested using the catchiness
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values given by five annotators with musical expertise, the local alignment score which
indicated whether the generated samples were realistic, and the classification at fine and
coarse-grained levels to check whether the generated songs belong to the same class of the
songs where the seed was selected from. As future directions, we would like to increase our
collection of MIDI files and let the transformer train on a much larger size of samples for
both classification and generation. Moreover, to improve the classification, we will employ
an ensemble of different transformer models and use majority voting to decide the winning
class. One more analysis will be to study the different tracks by instruments and check
whether tracks containing a fewer number of instruments (or a particular instrument) are
easier to classify or to be used to generate new MIDI samples.
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