1,307 research outputs found

    Direct Numerical Simulation of structural vacillation in the transition to geostrophic turbulence

    Full text link
    The onset of small-scale fluctuations around a steady convection pattern in a rotating baroclinic annulus filled with air is investigated using Direct Numerical Simulation. In previous laboratory experiments of baroclinic waves, such fluctuations have been associated with a flow regime termed Structural Vacillation which is regarded as the first step in the transition to fully-developed geostrophic turbulence.Comment: 6 page

    An assessment of the impact of local processes on dust lifting in martian climate models

    Get PDF
    Simulation of the lifting of dust from the planetary surface is of substantially greater importance on Mars than on Earth, due to the fundamental role that atmospheric dust plays in the former’s climate, yet the dust emission parameterisations used to date in martian global climate models (MGCMs) lag, understandably, behind their terrestrial counterparts in terms of sophistication. Recent developments in estimating surface roughness length over all martian terrains and in modelling atmospheric circulations at regional to local scales (less than O(100 km)) presents an opportunity to formulate an improved wind stress lifting parameterisation. We have upgraded the conventional scheme by including the spatially varying roughness length in the lifting parameterisation in a fully consistent manner (thereby correcting a possible underestimation of the true threshold level for wind stress lifting), and used a modification to account for deviations from neutral stability in the surface layer. Following these improvements, it is found that wind speeds at typical MGCM resolution never reach the lifting threshold at most gridpoints: winds fall particularly short in the southern midlatitudes, where mean roughness is large. Sub-grid scale variability, manifested in both the near-surface wind field and the surface roughness, is then considered, and is found to be a crucial means of bridging the gap between model winds and thresholds. Both forms of small-scale variability contribute to the formation of dust emission ‘hotspots’: areas within the model gridbox with particularly favourable conditions for lifting, namely a smooth surface combined with strong near-surface gusts. Such small-scale emission could in fact be particularly influential on Mars, due both to the intense positive radiative feedbacks that can drive storm growth and a strong hysteresis effect on saltation. By modelling this variability, dust lifting is predicted at the locations at which dust storms are frequently observed, including the flushing storm sources of Chryse and Utopia, and southern midlatitude areas from which larger storms tend to initiate, such as Hellas and Solis Planum. The seasonal cycle of emission, which includes a double-peaked structure in northern autumn and winter, also appears realistic. Significant increases to lifting rates are produced for any sensible choices of parameters controlling the sub-grid distributions used, but results are sensitive to the smallest scale of variability considered, which high-resolution modelling suggests should be O(1 km) or less. Use of such models in future will permit the use of a diagnosed (rather than prescribed) variable gustiness intensity, which should further enhance dust lifting in the southern hemisphere in particular

    Study protocol for a randomised controlled trial of invasive versus conservative management of primary spontaneous pneumothorax

    Get PDF
    INTRODUCTION: Current management of primary spontaneous pneumothorax (PSP) is variable, with little evidence from randomised controlled trials to guide treatment. Guidelines emphasise intervention in many patients, which involves chest drain insertion, hospital admission and occasionally surgery. However, there is evidence that conservative management may be effective and safe, and it may also reduce the risk of recurrence. Significant questions remain regarding the optimal initial approach to the management of PSP

    Expanded Vandermonde powers and sum rules for the two-dimensional one-component plasma

    Full text link
    The two-dimensional one-component plasma (2dOCP) is a system of NN mobile particles of the same charge qq on a surface with a neutralising background. The Boltzmann factor of the 2dOCP at temperature TT can be expressed as a Vandermonde determinant to the power Γ=q2/(kBT)\Gamma=q^{2}/(k_B T). Recent advances in the theory of symmetric and anti-symmetric Jack polymonials provide an efficient way to expand this power of the Vandermonde in their monomial basis, allowing the computation of several thermodynamic and structural properties of the 2dOCP for NN values up to 14 and Γ\Gamma equal to 4, 6 and 8. In this work, we explore two applications of this formalism to study the moments of the pair correlation function of the 2dOCP on a sphere, and the distribution of radial linear statistics of the 2dOCP in the plane

    Unexpected Consequences: Women’s experiences of a self-hypnosis intervention to help with pain relief during labour.

    Get PDF
    Background Self-hypnosis is becoming increasingly popular as a means of labour pain management. Previous studies have produced mixed results. There are very few data on women’s views and experiences of using hypnosis in this context. As part of a randomized controlled trial of self-hypnosis for intra-partum pain relief (the SHIP Trial) we conducted qualitative interviews with women randomized to the intervention arm to explore their views and experiences of using self-hypnosis during labour and birth. Methods Participants were randomly selected from the intervention arm of the study, which consisted of two antenatal self-hypnosis training sessions and a supporting CD that women were encouraged to listen to daily from 32 weeks gestation until the birth of their baby. Those who consented were interviewed in their own homes 8-12 weeks after birth. Following transcription, the interviews were analysed iteratively and emerging concepts were discussed amongst the authors to generate organizing themes. These were then used to develop a principal organizing metaphor or global theme, in a process known as thematic networks analysis. Results Of the 343 women in the intervention group, 48 were invited to interview, and 16 were interviewed over a 12 month period from February 2012 to January 2013. Coding of the data and subsequent analysis revealed a global theme of ‘unexpected consequences’, supported by 5 organising themes, ‘calmness in a climate of fear’, ‘from sceptic to believer’, ‘finding my space’, ‘delays and disappointments’ and ‘personal preferences’. Most respondents reported positive experiences of self-hypnosis and highlighted feelings of calmness, confidence and empowerment. They found the intervention to be beneficial and used a range of novel strategies to personalize their self-hypnosis practice. Occasionally women reported feeling frustrated or disappointed when their relaxed state was misinterpreted by midwives on admission or when their labour and birth experiences did not match their expectations. Conclusion The women in this study generally appreciated antenatal self-hypnosis training and found it to be beneficial during labour and birth. The state of focused relaxation experienced by women using the technique needs to be recognized by providers if the intervention is to be implemented into the maternity service
    corecore