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Abstract
In this paper we explore the possibility of deriving

low-dimensional models of the dynamics of the Mar-
tian atmosphere. The analysis consists of a Proper
Orthogonal Decomposition (POD) of the atmospheric
streamfunction after first decomposing the vertical
structure with a set of eigenmodes. The vertical
modes were obtained from the quasi-geostrophic verti-
cal structure equation. The empirical orthogonal func-
tions (EOFs) were optimized to represent the atmo-
spheric total energy. The total energy was used as the
criterion to retain those modes with large energy con-
tent and discard the rest. The principal components
(PCs) were analysed by means of Fourier analysis, so
that the dominant frequencies could be identified. It
was possible to observe the strong influence of the di-
urnal cycle and to identify the motion and vacillation
of baroclinic waves.

Key words
Mars, Proper Orthogonal Decomposition, baroclinic

waves.

1 Introduction
Reduced-order models of the terrestrial atmosphere

have been widely studied using the methods of
Proper Orthogonal Decomposition (POD) (Achatz and
Branstator, 1999; Achatz and Opsteegh, 2003a; Achatz
and Opsteegh, 2003b) and Principal Interaction Pat-
terns (PIPs) (Kwasniok, 2004). However, only a few
analogous studies have been carried out for extrater-
restrial atmospheres (Whitehouse et al., 2004a; White-

house et al., 2004b). Such studies would be invaluable
for understanding the long term behaviour of both ex-
traterrestrial and terrestrial atmospheres as an aspect of
comparative planetology.
It has been suggested that an important part of the

large-scale variability of the dynamics of the Mar-
tian atmosphere takes place in a phase space of rela-
tively low dimension (Collins et al., 1996; Read and
Lewis, 2004). Whitehouse et al. (2004a, 2004b) de-
veloped low-order models by means of POD-Galerkin
methods for a flat spherical planet whose planetary pa-
rameters were chosen to be similar to those of Mars.
The relevant physical processes were represented by
simple parameterisations such as Newtonian cooling
and linear surface drag.
Our aim is to go further and to develop more realistic

reduced-order models of the dynamical behaviour of
the Martian atmosphere including some relevant physi-
cal processes, in particular the interactions with topog-
raphy and tides. In this paper we shall present results
from a diagnostic analysis which suggest that a reduc-
tion of the number of dimensions is feasible.
The data to be analysed correspond to a period of

150 sols (1 sol = 1 Martian day, approximately 40
minutes longer than a terrestrial day) during the tran-
sition from autumn to winter in the northern Martian
hemisphere (1 Martian year = 668.6 sols), when the
baroclinic wave activity is enhanced, i.e. the develop-
ment of cyclone-anticyclone systems transporting en-
ergy from the equator to the poles is more likely to oc-
cur. The data were taken from an assimilation of obser-
vations of atmospheric temperatures and dust made by
the Thermal Emission Spectrometer (TES) on board of



the Mars Global Surveyor (MGS) into the Oxford Mar-
tian General Circulation Model (MGCM). This model
solves the hydrostatic primitive equations (the hydro-
static Navier-Stokes equations applied to a perfect gas
surrounding a rotating spherical planet) by means of
spectral methods on horizontal levels (expanding the
fields in terms of spherical harmonics) and with a finite-
difference scheme in the vertical direction. For this
study, data were taken from a MGCM run with spec-
tral resolution T31 (jagged triangular truncation at total
wavenumber 31). The vertical resolution is given by 25
unevenly spaced levels in terrain-following sigma co-
ordinates (σ = p(x, y, z, t)/ps(x, y, t), where ps is the
surface pressure). The model includes parameterisation
schemes of physical processes such as radiative trans-
fer, surface and sub-surface processes, sub-grid scale
dynamics and carbon dioxide condensation and subli-
mation (Forget et al., 1999).

2 Vertical Modes and Energy Considerations
This study uses a quasi-geostrophic approximation

(QG) to the dynamics of the atmosphere. This means
that the leading order balance is between the Corio-
lis force and the horizontal pressure gradient: the so-
called the geostrophic balance. This approximation is
valid whenever the Rossby number

Ro ≡ U

2Ωa
� 1, (1)

where U is a typical horizontal wind velocity, Ω is the
rotation rate of the planet and a is the planetary ra-
dius, giving the ratio between the inertia terms and the
Coriolis force. The geostrophic approximation is use-
ful for describing atmospheric motion for large-scale
synoptic weather systems in extratropical latitudes. In
the case of Mars, the horizontal wind reaches typical
maximum speeds of U = 100 m/s at a height of 30-
50 km above the surface. Since the planetary radius
of Mars is a = 3.394 × 106 m and its rotation rate
is Ω = 7.08822 × 10−5 s−1, the maximum Rossby
number is Ro = 0.2. We can therefore say that QG
theory should be a reasonable approximation to large-
scale motions, the case relevant to our work.
In the QG approximation we assume that the velocity

can be divided into two parts

V = Vg + Va, (2)

where the magnitude of the ageostrophic wind velocity
Va is much smaller than that of the geostrophic wind
velocity Vg , the ratio being of the same order of mag-
nitude as the Rossby number. Under these assumptions
it is possible to derive a consistent set of equations de-
scribing the synoptic-scale atmospheric dynamical be-
haviour (Holton, 2004).

2.1 Vertical Structure Equation
One important result of QG theory is the conserva-

tion of potential vorticity for adiabatic flow. Using
terrain-following sigma coordinates after linearisation,
this conservation law may be expressed as

∂

∂t

(
∇2ψ +

(
f

ps

)2
∂

∂σ

(
1

S

∂ψ

∂σ

))
+

1

cosφ

∂ψ

∂λ

∂f

∂φ
= 0, (3)

where λ and φ are longitude and latitude, respectively,
f ≡ 2Ω sinφ is the Coriolis parameter, and S = S(σ)
is the stratification parameter. The latter depends only
on the vertical coordinate sigma and contains informa-
tion about the vertical stratification of the atmosphere.
ψ is the streamfunction and is related to the geostrophic
wind velocity by the equation

Vg = k×∇ψ, (4)

where k is a unit vector pointing upwards.
Assuming a separable solution of the form

ψ(x, σ, t) = ψ̃(x, t)H(σ), (5)

where x denotes the set of horizontal variables {φ, λ}
in spherical areographical coordinates, we obtain the
equation for the vertical structure:

d

dσ

(
1

S

dH

dσ

)
+ ΛH = 0. (6)

Here, Λ plays the role of an eigenvalue whose meaning
will be fully discussed later. Equation (6) needs to be
supplemented by suitable boundary conditions. These
were chosen to be

dH

dσ
= 0 , at σ = σ1 and σ = 1, (7)

where σ1 = 4 × 10−3 (approximately z = 73.7 km)
is the position of the upper boundary. The boundary
conditions (7) imply the assumption of a rigid lid at
the upper boundary, σ = σ1. Physically, there is no
lid at the top of the atmosphere and such an assump-
tion may produce spurious free oscillations propagat-
ing vertically (Lindzen et al., 1968). However, choos-
ing homogeneous boundary conditions allows us to re-
strict the problem to the analysis of the lower and mid-
dle atmosphere, where most of the energy is found,
and eliminates the upper atmosphere in a first approx-
imation. It also makes our model consistent with the
bounded MGCM.



The set of eigenfunctions H = {Hk(σ)} for k =
0, 1, 2, . . ., constitute a complete orthogonal set since
they are the eigenvectors of a self-adjoint operator and
can be normalized by

∫ 1

σ1

HkHldσ = δkl. (8)

2.2 Energy in the Vertical Modes
In order to investigate the energy distribution among

the different vertical modes it is necessary to have suit-
able expressions for the energy content of each mode.
There are basically two kinds of energy involved in
the development of atmospheric processes. The first
is available potential energy (APE), the fraction of the
sum of the potential and internal energies in the atmo-
sphere that is available for conversion into kinetic en-
ergy (Lorenz, 1955). It is the main source of energy
for the maintenance of the general circulation at mid-
latitudes and for the development of baroclinic waves.
For the k-th vertical mode this is given by

Ak =
f2

0 a
2

2gp0
Λk
∑

n,m

′|(ψ̃k)mn |2, (9)

where f0 and p0 are respectively the average of the
Coriolis parameter and the surface pressure over the
whole globe and g is the acceleration due to gravity.
Σ′ indicates that the term corresponding to n = 0 is
excluded from the sum.
The second kind of energy, kinetic energy (KE), as-

sociated with the squared velocity of the wind can be
expressed for the k-th vertical mode as

Kk =
p0

2g

∑

n,m

′n(n+ 1)|(ψ̃k)mn |2. (10)

The total energy (TE) in the k-th vertical mode is
then defined as the sum of KE and APE in each mode.
The ratio of KE to APE in the mode is proportional to
λ2
Rk = p2

0/(f
2
0 Λk), which is the square of the Rossby

radius of deformation for the k-th vertical mode. It
is a fundamental length scale in atmospheric physics
and can be interpreted as “the horizontal scale at which
rotation become as important as buoyancy effects”
(Gill, 1982).
The relation between the Rossby radius of deforma-

tion and the eigenvalues of the vertical structure equa-
tion is now apparent since Λk is inversely proportional
to λ2

Rk. Figure 1 shows the Rossby radius of defor-
mation for the first 21 vertical modes. Mode 0 is the
barotropic mode. It corresponds to Λ = 0 and is
independent of height. The modes corresponding to
k = 1, 2, . . ., are called the first baroclinic mode, sec-
ond baroclinic mode, etc. The number k indicates the
number of zeros which the mode has. Figure 2 shows
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Figure 1. Rossby radius of deformationλRk for k = 0, . . . , 20.
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Figure 2. The vertical structure of the barotropic and the first three
baroclinic modes.

the structure of the barotropic and the first three baro-
clinic modes. For the sake of clarity, z = −H lnσ has
been used as vertical coordinate withH = 10 km taken
as the proper scale height on Mars.
An important property of the vertical eigenmodes

is the energy distribution. Figure 3 shows the KE,
APE and TE content of the first 21 vertical modes.
It also shows the fraction of the energy contained in
the zonal (axisymmetric) flow and in the eddies (non-
axisymmetric flow). KE decreases monotonically as
the mode number increases. This is also the case for
APE although there are four anomalies between the
modes (6,7), (8,9), (14,15) and (19,20) where APE in-
creases. This may be caused by the finite character of
the time series under analysis. However, when look-
ing at the distribution of TE (Figure 4) it is apparent
that, despite these anomalies, most of the energy is
found in the first few vertical modes so that it is nec-
essary, for example, to keep only 12 modes including
the barotropic one to retain 92.2% of the energy content
in the whole atmosphere.
Figure 4 also shows that the fraction of energy con-

tained in the eddies increases when more vertical
modes are retained. This effect is mainly due to the
distribution of APE since KE becomes negligible as
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Figure 3. Distribution of the (a) kinetic energy, K , and (b) avail-
able potential energy, A, over the vertical modes and over the zonal
(blue), and eddy (green) streamfunction fields.
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Figure 4. Accumulation of the total energy Ek = Ak + Kk

over the vertical modes and over the zonal (blue), and eddy (green)
streamfunction fields, normalized by the total energy contained by
the whole atmosphere.

the mode number increases (Figure 3). It may also be
caused by the interaction of higher order modes with
topography, which is the main source of zonal asym-
metry that is consistent with the structure of the vertical
eigenmodes.

3 Proper Orthogonal Decomposition
The POD (Berkooz et al., 1993; Holmes et al., 1996)

enables us to find a set of empirical orthogonal func-
tions (EOFs). These optimise the variance of the sys-
tem among all possible linear expansions and a given
number of modes. By a suitable definition of the in-
ner product, it is possible to use the same procedure to
represent energy instead of variance and keep all the
analysis in the spectral space.

3.1 Phase space
The streamfunction can be split into an axisymmetric

zonal field ψ̂ = ψ̂(φ) and an eddy field Ψ = Ψ(λ, φ, t),
and then expanded in terms of spherical harmonics
Y mn = Y mn (λ, φ) as:

ψ̂ =
∑N0

n=0 ψ
0
nY

0
n

Ψ = 2<
{∑N−1

m=1

∑Nm
n=m ψ

m
n Y

m
n

}





(11)

Note that in equation (11b) only the coefficients with
positive m are used.
Equations (11) enable us to define two vector spaces

on which to perform the POD separately: a real vec-
tor space formed by the real spectral coefficients of the
zonal field, ψ0

n, and a complex vector space formed by
the complex spectral coefficients of the eddy field, ψmn .
Let ψk ∈ Vr (the k-th modal state vector with k =

0, . . . ,∞) be defined as the column vector whose en-
tries are determined by the spherical harmonic expan-
sion of the k-th vertical mode ψk. Consider a jagged
T31 resolution whose coefficients are ordered with in-
creasing n within increasing m, taking first the coeffi-
cients for which the meridional wavenumber n−|m| is
odd and then those for which it is even. Then

ψk =

( (
(ψ̃k)mn | n−m odd

)
(

(ψ̃k)mn | n−m even
)
)
, (12)

where the inner parentheses also represent column vec-
tors; m = 0 in the case of the zonal field and m =
1, . . . , Tn − 1 in the case of the eddy field while n =
m, . . . , Nm. Tn = 31 is the highest wavenumber in the
expansion and Nm = 31 if m is even and Nm = 30 if
m is odd.
The vector space Vr is either R31 or C480 depending

on the field that is being analysed, the former for the
zonal field, the latter for the eddies.
Let the state vector, denoted by ψ =

[ψ0,ψ1, . . . ,ψq]
T ∈ Vs, be the column vector

of q + 1 concatenated modal state vectors so that
s = r(q + 1), where r = 31 for the zonal field and
r = 480 for the eddy field. The number q + 1 of
vertical modes varies according to the amount of
energy of the original system to be explained. For
instance, to explain 77.8 % of the total available energy
it is sufficient to retain the barotropic and the first six
baroclinic modes, while to represent 92.2 % of the total
available energy it is necessary to use at least the first
11 baroclinic modes in addition to the barotropic mode
(See figure 4). The complex space of s dimensions,
where the state vector evolves, constitutes the phase
space of interest.
It is also possible to perform the decomposition on the

complete streamfunction field using real principal com-
ponents (Schubert, 1985). However, this formulation
requires almost four times as much computer memory
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The eigenvalues are normalized so that their sum is equal to unity.

as the method presented here since it employs not only
the spectral coefficients with m ≥ 0 but the complete
set of coefficients.

3.2 Metric of the Phase Space
To give a metric to our vector space it is necessary to

define an inner product. Whitehouse (2004a,b) con-
cluded that of the three norms that they tested (correla-
tion, KE and TE) the best representation was obtained
with the TE norm. Achatz and Opsteegh (2003a,b) also
used the TE norm in order to retain interactions be-
tween the velocity and temperature fields. We, there-
fore, adopt the same norm in this work.
We define the energy matrix of the k-th mode as

Ek = C
p0

2g
diag

((
a

λRk

)2

+ n(n+ 1)

)
, (13)

where constant C takes the value C = 1 for the zonal
motion and C = 2 for the eddy field.
The total energy matrix E is constructed as a block

diagonal matrix whose entries are the energy matrices
Ek, i.e.

E = diag (E0, . . . ,Eq) . (14)

We define the inner product in Vs as

(u,v) = u†Ev, (15)

where u,v ∈ Vs are two arbitrary state vectors and u†

denotes the conjugate transpose of u. Clearly u† = uT

in the case of Rs, where uT is the transpose of u.
The inner product must satisfy the usual properties

of a Hermitian inner product. In particular, (u,v) =
(v,u)∗, where z∗ is the complex conjugate of z ∈ C.
Since E is a positive definite matrix

||u|| = (u,u)1/2 ≥ 0 (16)

with the equality holding only if u = 0. With this
definition the energy is given by the squared norm of

Table 1. Energy content of the first ten zonal and eddy eigenmodes.
(AZE = accumulated zonal energy; AEE = accumulated eddy energy)

Zonal AZE Eddy AEE

Mode (%) (%) (%) (%)

1 36.51 36.51 47.56 47.56

2 27.57 64.08 26.50 74.06

3 22.85 86.93 3.03 82.52

4 5.50 92.42 2.28 85.55

5 2.26 94.69 1.20 87.83

6 1.45 96.14 1.00 89.03

7 0.91 97.05 0.92 90.03

8 0.83 97.88 0.77 90.95

9 0.55 98.43 0.66 91.72

10 0.40 98.83 0.57 92.39

the state vector, i.e.

E = (ψ,ψ) = ||ψ||2. (17)

We adopt the procedure of Holmes et al. (1996) to
derive the EOFs. Following Selten (1993) and White-
house et al. (2004a) , the mean state is retained so that
dynamical interactions between it and the EOFs are al-
lowed. Energy rather than variance is optimized.
Let S = {ψ(t)|ψ(t) ∈ Vs} be a set of realizations

of the vector ψ. Suppose that we want to find a basis{
φj
}s
j=1

spanning Vs. The finite-dimensional expan-
sion

ψN (t) =
N∑

j=1

aj(t)φj , (18)

explains more of the energy contained in ψ ∈ Vs than
any other linear expansion of the same dimension N .
To do this we find φ satisfying

max
φ∈Vs

〈|(ψ,φ)|2〉
||φ||2 , (19)

where | · | denotes the modulus. This can be done using
standard calculus of variations techniques (not repro-
duced here) to obtain

〈ψψ†〉Eφ = λφ. (20)

The required basis is constituted from eigenvectors of
the autocorrelation matrix C = 〈ψψ†〉 post-multiplied
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Figure 6. Power spectra of (a) the first, and (b) second zonal PCs,
showing the relative importance of the diurnal and semidiurnal cycles
as well as of processes of low frequency (long period).

by the TE matrix E. While C is Hermitian and E is
diagonal with real entries, the matrix product CE is
neither Hermitian nor diagonal. However, by defining
D ≡ E1/2CE1/2 where E ≡ E1/2E1/2 we can write
(Whitehouse et al., 2004a)

Dθ = λθ, (21)

where θ ≡ E1/2φ. This ensures that the eigenvalues
λ are real (since D is Hermitian by definition) and that
the eigenvectors θi are orthogonal under the usual inner
product, i.e.

θ†iθj =
(
E1/2φi

)† (
E1/2φj

)
= φ†iEφj . (22)

Therefore, the empirical eigenvectors are orthonormal
under the inner product defined by E .
The set {φj} is the required basis and can, therefore,

be used to expand the original vector ψk

ψk(t) =
∞∑

j=1

aj(t)φ
k
j . (23)
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Figure 7. Empirical eigenvalues corresponding to the eddies. The
eigenvalues are normalized so that their sum is equal to unity.
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Figure 8. Accumulation of the energy throughout the eddy EOFs.

The time-dependent coefficients {aj(t)} ∈ V, can be
calculated in the usual way by using the orthonormal-
ity of the empirical eigenvectors to obtain aj(t) =(
φj ,ψ

)
. The coefficients aj are called Principal Com-

ponents (PC) and can be either real or complex depend-
ing on whether the zonal or the eddy field is being con-
sidered.
To return to physical space, we replace {θj}∞j=1 by{
φj
}∞
j=1

using the equation φj = E−1/2θj . Note that
the decomposition has been carried out on only a half of
the (n,m)-space, where m ≥ 0 and so, to recover the
streamfunction field on a longitude-latitude grid, equa-
tions (11) must be used.

3.3 Zonal Field Decomposition
The POD was carried out using q = 11 baroclinic

modes and the barotropic mode. This represents 92.2%
of the total energy of the original system (c.f. Figure 4).
Figure 5 shows the set of empirical eigenvalues

(EEVs) of the zonal field suitably normalized so that
their sum is equal to unity. The figure shows the rel-
ative significance of the first three modes, which to-
gether contain 86.93% of the total energy in the zonal
field and approximately 80.1% of the total energy in
the original system. The fourth mode contains 5.50%
of the zonal energy while the fifth contains 2.26%. The
subsequent modes each contain less than 2% (see Ta-
ble 1). Virtually, 100% of the zonal energy is achieved
within 26 modes.
The evolution of the PCs is mainly dominated by the
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seasonal cycle. However, the diurnal and semi-diurnal
tides are also important as can be seen from the power
spectra (Figure 6) where the significance of frequencies
corresponding to periods of 1 sol and 0.5 sol is shown.
It is apparent that periodic components in the time se-
ries corresponding to periods longer than 1 sol are also
important.

3.4 Eddy Field Decomposition
The decomposition of the eddy field yields the set of

eigenvalues shown in Figure 7 while the accumulation
of energy throughout the modes is shown in Figure 8.
The first EOF contains 47.56% of the eddy energy,
while the second contains 26.50% (See Table 1). In

0 1 2 3 4 5

10−4

10−2

100

102

104
(a)

period (sol)

P
ow

er
 o

n 
P

C
1

0
50

100
150 −0.1

−0.05

0

0.05

0.1

−0.1

−0.05

0

0.05

0.1

Re (PC1)

(b)

time (sols)

Im
 (P

C
1)

Figure 10. (a) Power spectrum and (b) evolution in the complex
plane of PC1. The regularity of this mode is due to the strong influ-
ence of the diurnal cycle over it which leads to the development of
thermal tides traveling westwards.

this case the energy is distributed among more modes
so that to account for 90% of the TE, seven modes are
required whereas seventeen modes are needed to ex-
plain 95% of the TE. In this paper we shall focus on the
behaviour of the first (the most energetic) and the third
eddy EOFs to illustrate the use of the POD to analyse
baroclinic waves on Mars.
The PCs associated with the eddy streamfunction field

are complex quantities in general and can be written as

aj(t) = Aj(t)e
iSj(t), (24)

where Aj is the amplitude and Sj is the phase of the j-
th PC. This associates two real functions, the real and
the imaginary parts of each PC, with each mode.
The state vector can be written in terms of EOFs by

substituting equation (24) into (23). Recalling that the
entries of the state vector are spectral coefficients of
vertical modes, a single vertical mode can be written as

Ψ = 2<
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Figure 11. Third eddy EOF after transforming to physical grid at
approximately (a) z = 5 km, (b) z = 10 km, and (c) z =
20 km. The approximate height z has been calculated using z =
−H lnσ, whereH = 10 km was taken as the proper scale height
on Mars.

where Cmn are simply the normalization coefficients of
the spherical harmonics. Note that the subscript k and
the tilde indicating the vertical mode were omitted for
the sake of clarity in notation. Since m > 0, Ṡj > 0

indicates westward whereas Ṡj < 0 indicates eastward
propagation, where Ṡ is the time derivative of S.
The most energetic EOF (Figure 9) is composed of

a diurnal tide of longitudinal wavenumber one and of
period 1 sol traveling westwards since Ṡ1 = 2π > 0.
The power spectrum (Figure 10a) confirms the domi-
nance on this mode of the diurnal tide. The power spec-
trum also shows the presence of a much weaker signal
with a period of 0.5 sol which indicates the influence of
the semi-diurnal tide on this EOF. While the intensity
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Figure 12. (a) Power spectrum and (b) evolution in the complex
plane of PC3. The main characteristic of this mode is the presence
of a vacillating baroclinic wave traveling eastwards over the northern
hemisphere.

of PC1 (PC corresponding to mode 1) is nearly con-
stant (Figure 10b), the influence of the seasonal cycle
is apparent. As expected, the influence of topography
causes a distortion of the waves near the surface but this
effect is attenuated as height increases. The influence
of topography over the atmospheric dynamics is also
important for the second EOF. It represents stationary
waves trapped by orographic structures oscillating with
period 1 sol.

The third EOF is composed of a baroclinic wave trav-
elling eastwards (since Ṡ ' −5π/8 < 0) with lon-
gitudinal wavenumber two and period τ = 3.2 sols.
The centre of the wave is located around 60 ◦N at every
height level (Figure 11). One characteristic of a baro-
clinic wave is that the geopotential trough and ridge
axes slope westwards with height (see, for instance,
(Holton, 2004)). This provides confirmation of the
character of the wave under analysis. An interesting
feature of this EOF is the evidence of amplitude vacil-
lation with a vacillation period of around 100 sols (Fig-
ure 12b). A better measure of the vacillation period
would require original data for a whole year or for sev-
eral years. The influence of the semi-diurnal tide is
more significant than the diurnal one for the third EOF,
although the latter is still apparent (Figure 12a).



4 Conclusion
In this paper a time series of the evolution of the

streamfunction on Mars, generated by the MGCM, was
decomposed into vertical and horizontal modes. The
selected run corresponds to the transition between au-
tumn and winter in the Martian northern hemisphere
when the baroclinic activity is stronger.
By means of the vertical decomposition it was possi-

ble to find and retain the most energetic modes, discard-
ing the rest. For example in order to represent 92.2%
of the TE in the original system we required 12 vertical
modes.
The POD analysis was carried out on the zonal (ax-

isymmetric) part of the streamfunction and on the eddy
part separately so that complex PCs could describe the
evolution of the eddy field. This formulation has the
advantage of using less computer memory, a fact that
becomes important when working with high spectral
resolution models. One drawback, however, is that
two state variables are required for each mode when
constructing low-order models via Galerkin approxi-
mation.
The zonal field analysis showed that the first four

EOFs contain more than 90% of the TE, while to
achieve the same level of accuracy in the eddy field,
at least 7 EOFs are required. For the eddy field, an
example involving the first and the third EOFs was
given. The first EOF, containing 47.56% of the en-
ergy in the eddy field, is strongly affected by the di-
urnal cycle. This mode consisted basically of a wave
of wavenumber one and period one sol traveling west-
wards which corresponds to a thermal tide. The third
EOF, containing 3% of the energy in the eddy field,
consisted of a wave with the characteristics of a baro-
clinic wave with the trough and ridge streamfunction
axes tilting westwards with height. This EOF corre-
sponds to a wavenumber two traveling eastwards with
a period 3.2 sols. The evolution of the corresponding
PC showed the vacillation of the baroclinic wave.
The analysis reported in this paper therefore gives an

indication of the feasibility of constructing low-order
models of the dynamical behaviour of the Martian at-
mosphere by representing a large amount of the origi-
nal system’s TE in terms of a few vertical and horizon-
tal modes. In the case discussed here, for example, 12
vertical modes and 30 eddy EOFs (containing 97% of
the TE in the eddy field) would be useful to represent
89% of the TE in the original system.
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