1,079 research outputs found

    Divergent and convergent evolution after a common-source outbreak of hepatitis C virus.

    Get PDF
    The genomic sequences of viruses that are highly mutable and cause chronic infection tend to diverge over time. We report that these changes represent both immune-driven selection and, in the absence of immune pressure, reversion toward an ancestral consensus. Sequence changes in hepatitis C virus (HCV) structural and nonstructural genes were studied in a cohort of women accidentally infected with HCV in a rare common-source outbreak. We compared sequences present in serum obtained 18–22 yr after infection to sequences present in the shared inoculum and found that HCV evolved along a distinct path in each woman. Amino acid substitutions in known epitopes were directed away from consensus in persons having the HLA allele associated with that epitope (immune selection), and toward consensus in those lacking the allele (reversion). These data suggest that vaccines for genetically diverse viruses may be more effective if they represent consensus sequence, rather than a human isolate

    Divergent and convergent evolution after a common-source outbreak of hepatitis C virus

    Get PDF
    The genomic sequences of viruses that are highly mutable and cause chronic infection tend to diverge over time. We report that these changes represent both immune-driven selection and, in the absence of immune pressure, reversion toward an ancestral consensus. Sequence changes in hepatitis C virus (HCV) structural and nonstructural genes were studied in a cohort of women accidentally infected with HCV in a rare common-source outbreak. We compared sequences present in serum obtained 18–22 yr after infection to sequences present in the shared inoculum and found that HCV evolved along a distinct path in each woman. Amino acid substitutions in known epitopes were directed away from consensus in persons having the HLA allele associated with that epitope (immune selection), and toward consensus in those lacking the allele (reversion). These data suggest that vaccines for genetically diverse viruses may be more effective if they represent consensus sequence, rather than a human isolate

    Evolution of the HIV-1 nef gene in HLA-B*57 Positive Elite Suppressors

    Get PDF
    Elite controllers or suppressors (ES) are HIV-1 infected patients who maintain viral loads of < 50 copies/ml without antiretroviral therapy. CD8+ T cells are thought to play a key role in the control of viral replication and exert selective pressure on gag and nef in HLA-B*57 positive ES. We previously showed evolution in the gag gene of ES which surprisingly was mostly due to synonymous mutations rather than non-synonymous mutation in targeted CTL epitopes. This finding could be the result of structural constraints on Gag, and we therefore examined the less conserved nef gene. We found slow evolution of nef in plasma virus in some ES. This evolution is mostly due to synonymous mutations and occurs at a rate similar to that seen in the gag gene in the same patients. The results provide further evidence of ongoing viral replication in ES and suggest that the nef and gag genes in these patients respond similarly to selective pressure from the host

    Expressed sequence tag analysis of genes expressed during development of the tropical abalone Haliotis asinina

    Get PDF
    The tropical abalone. Haliotis asinina. is,in ideal species to investigate the molecular mechanisms that control development. growth, reproduction and shell formation in all cultured haliotids. Here we describe the analysis of 232 expressed sequence tags (EST) obtained front a developmental H. asinina cDNA library intended for future microarray studies. From this data set we identified 183 unique gene Clusters. Of these, 90 clusters showed significant homology with sequences lodged in GenBank, ranging in function from general housekeeping to signal transduction, gene regulation and cell-cell communication. Seventy-one clusters possessed completely novel ORFs greater than 50 codons in length, highlighting the paucity of sequence data from molluscs and other lophotrochozoans. This study of developmental gene expression in H. asinina provides the foundation for further detailed analyses of abalone growth, development and reproduction

    Development of the Continuously Variable Volume Reactor for Flow Injection AnalysisDesign, Capabilities and Testing

    Get PDF
    A new apparatus for mixing sample and reagent in flow injection analysis is described. The continuously variable volume reactor (CVVR) replaces the conventional mixing coil in a flow injection manifold to provide mixing and dilution. A linear actuator motor allows control of the chamber volume via Lab VIEW software. The chamber volume can be incremented in steps of 1 uL over the range 68-1704 uL. In addition, the chamber has an integral variable-speed stirring unit that is also under computer control. Experiments were performed to evaluate the dispersion characteristics of this new device, evaluate the volume reproducibility, and understand the mixing characteristics. Use of the chamber is shown in the determination of iron (II) in pond water, and in NIST SRM 1643d with excellent results and a detection limit of 3.7 ug/L iron(II). Advantages of the CVVR and future research activities using the device are discussed

    Plasma deconvolution identifies broadly neutralizing antibodies associated with hepatitis C virus clearance

    Get PDF
    A vaccine for hepatitis C virus (HCV) is urgently needed. Development of broadly neutralizing plasma antibodies during acute infection is associated with HCV clearance, but the viral epitopes of these plasma antibodies are unknown. Identifying these epitopes could define the specificity and function of neutralizing antibodies (NAbs) that should be induced by a vaccine. Here, we present the development and application of a high-throughput method that deconvolutes polyclonal anti-HCV NAbs in plasma, delineating the epitope specificities of anti-HCV NAbs in acute-infection plasma of 44 humans with subsequent clearance or persistence of HCV. Remarkably, we identified multiple broadly neutralizing antibody combinations that were associated with greater plasma neutralizing breadth and with HCV clearance. These studies have the potential to inform new strategies for vaccine development by identifying broadly neutralizing antibody combinations in plasma associated with the natural clearance of HCV, while also providing a high-throughput assay that could identify these responses after vaccination trials

    Plant functional types do not predict biomass responses to removal and fertilization in Alaskan tussock tundra

    Get PDF
    © 2008 The Authors. This is an open-access article distributed under the terms of the Creative Commons Attribution License 2.5. The definitive version was published in Journal of Ecology 96 (2008): 713-726, doi:10.1111/j.1365-2745.2008.01378.x.Plant communities in natural ecosystems are changing and species are being lost due to anthropogenic impacts including global warming and increasing nitrogen (N) deposition. We removed dominant species, combinations of species and entire functional types from Alaskan tussock tundra, in the presence and absence of fertilization, to examine the effects of non-random species loss on plant interactions and ecosystem functioning. After 6 years, growth of remaining species had compensated for biomass loss due to removal in all treatments except the combined removal of moss, Betula nana and Ledum palustre (MBL), which removed the most biomass. Total vascular plant production returned to control levels in all removal treatments, including MBL. Inorganic soil nutrient availability, as indexed by resins, returned to control levels in all unfertilized removal treatments, except MBL. Although biomass compensation occurred, the species that provided most of the compensating biomass in any given treatment were not from the same functional type (growth form) as the removed species. This provides empirical evidence that functional types based on effect traits are not the same as functional types based on response to perturbation. Calculations based on redistributing N from the removed species to the remaining species suggested that dominant species from other functional types contributed most of the compensatory biomass. Fertilization did not increase total plant community biomass, because increases in graminoid and deciduous shrub biomass were offset by decreases in evergreen shrub, moss and lichen biomass. Fertilization greatly increased inorganic soil nutrient availability. In fertilized removal treatments, deciduous shrubs and graminoids grew more than expected based on their performance in the fertilized intact community, while evergreen shrubs, mosses and lichens all grew less than expected. Deciduous shrubs performed better than graminoids when B. nana was present, but not when it had been removed. Synthesis. Terrestrial ecosystem response to warmer temperatures and greater nutrient availability in the Arctic may result in vegetative stable-states dominated by either deciduous shrubs or graminoids. The current relative abundance of these dominant growth forms may serve as a predictor for future vegetation composition.This work was supported by NSF grants DEB-0213130, DEB-0516509, OPP-0623364, DEB-981022 and DEB-0423385, and by the Inter-American Institute for Global Change Research (IAI) CRN 2015 which is supported by the US National Science Foundation (GEO-0452325). Open access to this publication was partially supported by the Berkeley Research Impact Initiative Program

    Synergistic anti-HCV broadly neutralizing human monoclonal antibodies with independent mechanisms

    Get PDF
    There is an urgent need for a vaccine to combat the hepatitis C virus (HCV) pandemic, and induction of broadly neutralizing monoclonal antibodies (bNAbs) against HCV is a major goal of vaccine development. Even within HCV genotype 1, no single bNAb effectively neutralizes all viral strains, so induction of multiple neutralizing monoclonal antibodies (NAbs) targeting distinct epitopes may be necessary for protective immunity. Therefore, identification of optimal NAb combinations and characterization of NAb interactions can guide vaccine development. We analyzed neutralization profiles of 12 human NAbs across diverse HCV strains, assigning the NAbs to two functionally distinct clusters. We then measured neutralizing breadth of 35 NAb combinations against genotype 1 isolates, with each combination including one NAb from each neutralization cluster. Many NAbs displayed complementary neutralizing breadth, forming combinations with greater neutralization across diverse strains than any individual bNAb. Remarkably, one of the most broadly neutralizing combinations of two NAbs, designated HEPC74/HEPC98, also displayed enhanced potency, with interactions matching the Bliss independence model, suggesting that these NAbs inhibit HCV infection through independent mechanisms. Subsequent experiments showed that HEPC74 primarily blocks HCV envelope protein binding to CD81, while HEPC98 primarily blocks binding to scavenger receptor B1 and heparan sulfate. Together, these data identify a critical vulnerability resulting from the reliance of HCV on multiple cell surface receptors, suggesting that vaccine induction of multiple NAbs with distinct neutralization profiles is likely to enhance the breadth and potency of the humoral immune response against HCV
    corecore