41 research outputs found

    Influence de la fissuration sur le transfert de fluides dans les structures en béton (stratégies de modélisation probabiliste et étude expérimentale)

    Get PDF
    Une structure en béton doit assurer des fonctions structurales qui vont au delà de la simple résistance. Dans ce cadre, la fissuration du béton armé joue un rôle primordial sur la durabilité, l'étanchéité et même la sûreté des structures. La structure poreuse du béton rend naturellement possible la pénétration au cours du temps d'espèces délétères. En outre, sous l'effet des chargements mécaniques et des conditions environnementales au sens large, le béton se fissure. Les fissures constituent, elles aussi, des voies préférentielles pour la pénétration de fluides ou d'agents agressifs et ajoutent de manière significative leur contribution à la dégradation des performances structurelles. Dans la thèse une stratégie de modélisation macroscopique probabiliste du couplage entre fissuration et transferts de fluides dans les structures en béton est présentée. Le béton est modélisé comme un milieu poreux saturé d'eau tandis que la fissuration (mécanique) est modélisée au travers d'une approche numérique probabiliste tenant compte de l'hétérogénéité naturelle du matériau et des effets d'échelle qu'elle induit. L'hypothèse physique de base du modèle de fissuration est que chaque élément fini peut être considéré comme représentatif d'un volume de matière hétérogène dont le comportement est géré par son degré d'hétérogénéité, défini comme le rapport entre le volume élémentaire et un volume représentatif de l'hétérogénéité du matériau. Dans la formulation développée, les propriétés mécaniques du matériau sont considérées comme des variables aléatoires (non corrélés) distribuées dans les éléments du maillage selon des distributions statistiques validées expérimentalement. Une approche par analyse inverse permet d'accéder aux paramètres de fonctions de distribution qui, selon les hypothèses du modèle, varient en fonction de la dimension des éléments finis. Le couplage fissuration-transfert est traité de manière faible, sous l'hypothèse d'absence d'interaction entre les deux processus (à savoir que la fissuration de l'élément fini, d'origine mécanique, induit une variation locale de sa perméabilité). L'utilisation d'une loi de Poiseuille modifiée et adaptée expérimentalement selon un protocole développé dans le cadre de la thèse permet de mettre en relation une telle variation avec l'ouverture de fissure et de prendre en compte, de manière macroscopique, les principales causes d'écart entre l'écoulement idéalisé, représenté par la loi de Pouiselle, et l'écoulement dans des fissures réelles. Une approche de type Monte-Carlo permet de valider les résultats des simulations mécaniques et hydriques. Les capacités de la stratégie de modélisation proposée en termes de prédiction des débits d'eau en milieu fissuré sont explorées au travers de la simulation d'essais de perméabilité sous charge sur des éprouvettes cylindriques soumises à du fendage. Ces essais sont utilisés dans le cadre du protocole expérimentale. Une première validation à l'échelle d'un élément structurel multifissuré est presentée. Elle consiste en la simulation d'un essai (récemment proposé dans la littérature) developpé pour l'étude de l'impact de la fissuration sur les propriétés de transfert de tirants en béton arméConcrete durability is strongly affected by the flow of fluids, gas and pollutants in its porous matrix. The presence of cracks weakens the resistance of concrete porous matrix and constitutes preferential flow paths for aggressive components. In the thesis, a probabilistic numerical modeling strategy for modeling fluids transfers in cracked concrete structures is presented. The concrete is modeled in the framework of water saturated porous media. Its (mechanical) cracking is modeled by means of a macroscopic probabilistic approach, explicitly taking into account material heterogeneity as well as size effects. The main assumption of the model, developed in the frame of the the Finite Element Method, is to consider a finite element volume as a volume of heterogeneous material and to assume that physical mechanisms influencing the cracking processes remain the same whatever the scale of observation. At the scale of the finite element, mechanical properties are then functions of its own volume. To describe the heterogeneity of the material, these mechanical properties are consider as uncorrelated random variables distributed over the finite element mesh. Characteristics of statistical distribution laws are directly depending on the degree of heterogeneity of the finite element (the ratio between its volume and the volume of the coarsest aggregate) and of the quality of the cement paste. An inverse analysis approach allows to find their parameters as functions of the elementary volume. A weak coupling between cracking and fluid transfers is considered, under the assumption of no interaction between the two processes (i.e. the mechanically produced cracking of a finite element induce a local variation of its permeability tensor). An experimentally adapted Pouiseuille law, based on an original experimental protocol, allows to relate this permeability variation to the crack aperture and to macroscopically take into account the influence of crack roughness, aperture variation and tortuosity. A Monte-Carlo like approach is used in order to statistically validate mechanical and hydraulic simulations. The coupling strategy is validated in two phases, both at the scale of a laboratory specimen and at the scale of a multi-cracked structural elementPARIS-EST-Université (770839901) / SudocSudocFranceF

    Path-following methods for unstable structural responses induced by strain softening: a critical review

    Get PDF
    Path-following methods for describing unstable structural responses induced by strain-softening are discussed. The main ingredients of the formalisms introduced by Riks and Crisfield for arc-length methods for geometrical non-linearities are presented. A link between two ways (monolithic and partitioned) of solving the resulting augmented equilibrium problem is discussed based on the Sherman–Morrison formula. The original monolithic approach assumes that the path-following constraint equation is differentiable with respect to the unknown displacement field and load factor. However, when dealing with material non-linearities, it is often preferred to consider constraint equations controlling the maximum of a field defined on the computational domain (e.g., a scalar strain measure, the rate of variation of an internal variable of the constitutive model). In that case, differentiability cannot be guaranteed due to the presence of the maximum operator. This makes only the partitioned formulation usable. Several path-following constraint equations from the literature are presented, and the corresponding implementations in the finite element method are discussed. The different formulations are compared based on a simple two-dimensional test case of damage localization in a beam submitted to tension. A test case involving multiple snap-backs is illustrated, finally, to show the robustness of the considered formulations

    Shake‐table tests on steel moment‐resisting frames with detachable yielding zones

    Get PDF
    AbstractThis article presents an experimental campaign based on shake table tests conducted as part of the European research project FUTURE, funded in the framework of the H2020‐INFRAIA SERA program. Three steel moment‐resisting frame structures equipped with replaceable dissipative elements were tested. The experimental mockups were scaled two thirds from a reference building archetype designed per the latest draft of the upcoming version of Eurocode 8. Each mockup has different bolted end‐plate beam‐to‐column joints, namely reduced beam section (RBS), extended stiffened endplate (ESEP), and Haunched types, designed with European seismic prequalification rules. Additionally, detachable column segments at the base were designed with Reduced Column Sections (RCS) to localize the plastic deformation and enforce the intended global dissipation mechanism. The slab was detailed with reduced areas around the columns to minimize the direct composite action at beam‐to‐column joints. The mockups were subjected to incremental near‐field excitations with combined horizontal and vertical components. In this article, the experimental campaign is first described, providing details on the mockup's geometry, design, scaling, ground excitations, and sensor distribution. Then, the observed global and local responses are discussed. The results demonstrate that the global response of the mockups was significantly influenced by the type of beam‐to‐column joints, which exhibited the expected damage. The RCS configuration in the column bases also showed satisfactory behavior without leading to local or global instabilities throughout the performed tests.</jats:p

    Influence de la fissuration sur le transfert de fluides dans les structures en béton : stratégies de modélisation probabiliste et étude expérimentale

    No full text
    Concrete durability is strongly affected by the flow of fluids, gas and pollutants in its porous matrix. The presence of cracks weakens the resistance of concrete porous matrix and constitutes preferential flow paths for aggressive components. In the thesis, a probabilistic numerical modeling strategy for modeling fluids transfers in cracked concrete structures is presented. The concrete is modeled in the framework of water saturated porous media. Its (mechanical) cracking is modeled by means of a macroscopic probabilistic approach, explicitly taking into account material heterogeneity as well as size effects. The main assumption of the model, developed in the frame of the the Finite Element Method, is to consider a finite element volume as a volume of heterogeneous material and to assume that physical mechanisms influencing the cracking processes remain the same whatever the scale of observation. At the scale of the finite element, mechanical properties are then functions of its own volume. To describe the heterogeneity of the material, these mechanical properties are consider as uncorrelated random variables distributed over the finite element mesh. Characteristics of statistical distribution laws are directly depending on the degree of heterogeneity of the finite element (the ratio between its volume and the volume of the coarsest aggregate) and of the quality of the cement paste. An inverse analysis approach allows to find their parameters as functions of the elementary volume. A weak coupling between cracking and fluid transfers is considered, under the assumption of no interaction between the two processes (i.e. the mechanically produced cracking of a finite element induce a local variation of its permeability tensor). An experimentally adapted Pouiseuille law, based on an original experimental protocol, allows to relate this permeability variation to the crack aperture and to macroscopically take into account the influence of crack roughness, aperture variation and tortuosity. A Monte-Carlo like approach is used in order to statistically validate mechanical and hydraulic simulations. The coupling strategy is validated in two phases, both at the scale of a laboratory specimen and at the scale of a multi-cracked structural elementUne structure en béton doit assurer des fonctions structurales qui vont au delà de la simple résistance. Dans ce cadre, la fissuration du béton armé joue un rôle primordial sur la durabilité, l'étanchéité et même la sûreté des structures. La structure poreuse du béton rend naturellement possible la pénétration au cours du temps d'espèces délétères. En outre, sous l'effet des chargements mécaniques et des conditions environnementales au sens large, le béton se fissure. Les fissures constituent, elles aussi, des voies préférentielles pour la pénétration de fluides ou d'agents agressifs et ajoutent de manière significative leur contribution à la dégradation des performances structurelles. Dans la thèse une stratégie de modélisation macroscopique probabiliste du couplage entre fissuration et transferts de fluides dans les structures en béton est présentée. Le béton est modélisé comme un milieu poreux saturé d'eau tandis que la fissuration (mécanique) est modélisée au travers d'une approche numérique probabiliste tenant compte de l'hétérogénéité naturelle du matériau et des effets d'échelle qu'elle induit. L'hypothèse physique de base du modèle de fissuration est que chaque élément fini peut être considéré comme représentatif d'un volume de matière hétérogène dont le comportement est géré par son degré d'hétérogénéité, défini comme le rapport entre le volume élémentaire et un volume représentatif de l'hétérogénéité du matériau. Dans la formulation développée, les propriétés mécaniques du matériau sont considérées comme des variables aléatoires (non corrélés) distribuées dans les éléments du maillage selon des distributions statistiques validées expérimentalement. Une approche par analyse inverse permet d'accéder aux paramètres de fonctions de distribution qui, selon les hypothèses du modèle, varient en fonction de la dimension des éléments finis. Le couplage fissuration-transfert est traité de manière faible, sous l'hypothèse d'absence d'interaction entre les deux processus (à savoir que la fissuration de l'élément fini, d'origine mécanique, induit une variation locale de sa perméabilité). L'utilisation d'une loi de Poiseuille modifiée et adaptée expérimentalement selon un protocole développé dans le cadre de la thèse permet de mettre en relation une telle variation avec l'ouverture de fissure et de prendre en compte, de manière macroscopique, les principales causes d'écart entre l'écoulement idéalisé, représenté par la loi de Pouiselle, et l'écoulement dans des fissures réelles. Une approche de type Monte-Carlo permet de valider les résultats des simulations mécaniques et hydriques. Les capacités de la stratégie de modélisation proposée en termes de prédiction des débits d'eau en milieu fissuré sont explorées au travers de la simulation d'essais de perméabilité sous charge sur des éprouvettes cylindriques soumises à du fendage. Ces essais sont utilisés dans le cadre du protocole expérimentale. Une première validation à l'échelle d'un élément structurel multifissuré est presentée. Elle consiste en la simulation d'un essai (récemment proposé dans la littérature) developpé pour l'étude de l'impact de la fissuration sur les propriétés de transfert de tirants en béton arm

    Fluid transfers in cracking concrete structures : numerical probabilistic modeling strategies and experimental investigations

    No full text
    Une structure en béton doit assurer des fonctions structurales qui vont au delà de la simple résistance. Dans ce cadre, la fissuration du béton armé joue un rôle primordial sur la durabilité, l'étanchéité et même la sûreté des structures. La structure poreuse du béton rend naturellement possible la pénétration au cours du temps d'espèces délétères. En outre, sous l'effet des chargements mécaniques et des conditions environnementales au sens large, le béton se fissure. Les fissures constituent, elles aussi, des voies préférentielles pour la pénétration de fluides ou d'agents agressifs et ajoutent de manière significative leur contribution à la dégradation des performances structurelles. Dans la thèse une stratégie de modélisation macroscopique probabiliste du couplage entre fissuration et transferts de fluides dans les structures en béton est présentée. Le béton est modélisé comme un milieu poreux saturé d'eau tandis que la fissuration (mécanique) est modélisée au travers d'une approche numérique probabiliste tenant compte de l'hétérogénéité naturelle du matériau et des effets d'échelle qu'elle induit. L'hypothèse physique de base du modèle de fissuration est que chaque élément fini peut être considéré comme représentatif d'un volume de matière hétérogène dont le comportement est géré par son degré d'hétérogénéité, défini comme le rapport entre le volume élémentaire et un volume représentatif de l'hétérogénéité du matériau. Dans la formulation développée, les propriétés mécaniques du matériau sont considérées comme des variables aléatoires (non corrélés) distribuées dans les éléments du maillage selon des distributions statistiques validées expérimentalement. Une approche par analyse inverse permet d'accéder aux paramètres de fonctions de distribution qui, selon les hypothèses du modèle, varient en fonction de la dimension des éléments finis. Le couplage fissuration-transfert est traité de manière faible, sous l'hypothèse d'absence d'interaction entre les deux processus (à savoir que la fissuration de l'élément fini, d'origine mécanique, induit une variation locale de sa perméabilité). L'utilisation d'une loi de Poiseuille modifiée et adaptée expérimentalement selon un protocole développé dans le cadre de la thèse permet de mettre en relation une telle variation avec l'ouverture de fissure et de prendre en compte, de manière macroscopique, les principales causes d'écart entre l'écoulement idéalisé, représenté par la loi de Pouiselle, et l'écoulement dans des fissures réelles. Une approche de type Monte-Carlo permet de valider les résultats des simulations mécaniques et hydriques. Les capacités de la stratégie de modélisation proposée en termes de prédiction des débits d'eau en milieu fissuré sont explorées au travers de la simulation d'essais de perméabilité sous charge sur des éprouvettes cylindriques soumises à du fendage. Ces essais sont utilisés dans le cadre du protocole expérimentale. Une première validation à l'échelle d'un élément structurel multifissuré est presentée. Elle consiste en la simulation d'un essai (récemment proposé dans la littérature) developpé pour l'étude de l'impact de la fissuration sur les propriétés de transfert de tirants en béton arméConcrete durability is strongly affected by the flow of fluids, gas and pollutants in its porous matrix. The presence of cracks weakens the resistance of concrete porous matrix and constitutes preferential flow paths for aggressive components. In the thesis, a probabilistic numerical modeling strategy for modeling fluids transfers in cracked concrete structures is presented. The concrete is modeled in the framework of water saturated porous media. Its (mechanical) cracking is modeled by means of a macroscopic probabilistic approach, explicitly taking into account material heterogeneity as well as size effects. The main assumption of the model, developed in the frame of the the Finite Element Method, is to consider a finite element volume as a volume of heterogeneous material and to assume that physical mechanisms influencing the cracking processes remain the same whatever the scale of observation. At the scale of the finite element, mechanical properties are then functions of its own volume. To describe the heterogeneity of the material, these mechanical properties are consider as uncorrelated random variables distributed over the finite element mesh. Characteristics of statistical distribution laws are directly depending on the degree of heterogeneity of the finite element (the ratio between its volume and the volume of the coarsest aggregate) and of the quality of the cement paste. An inverse analysis approach allows to find their parameters as functions of the elementary volume. A weak coupling between cracking and fluid transfers is considered, under the assumption of no interaction between the two processes (i.e. the mechanically produced cracking of a finite element induce a local variation of its permeability tensor). An experimentally adapted Pouiseuille law, based on an original experimental protocol, allows to relate this permeability variation to the crack aperture and to macroscopically take into account the influence of crack roughness, aperture variation and tortuosity. A Monte-Carlo like approach is used in order to statistically validate mechanical and hydraulic simulations. The coupling strategy is validated in two phases, both at the scale of a laboratory specimen and at the scale of a multi-cracked structural elemen

    Discontinuity-scale path-following methods for the embedded discontinuity finite element modeling of failure in solids

    No full text
    International audienceThe initiation and propagation of cracks in solids often leads to unstable structural responses characterized by snap-backs. Path-following procedures allow finding a solution to the algebraic system of equations resulting from the numerical formulation of the considered problem. Accordingly, the boundary value problem is supplemented by a novel global unknown, namely, the loading factor, which should comply with a dedicated equation, the so-called path-following constraint equation. In this contribution, path-following methods are discussed within the framework of the Embedded Finite Element Method (E-FEM). Thanks to the enhanced kinematic description provided by the E-FEM, we show that it is possible to formulate constraint equations where the prescribed quantities are directly related to the dissipative process occurring at the strong discontinuity level. After introducing the augmented E-FEM formulation, three discontinuity-scale path-following constraints and their numerical implementation (using an operator-splitting method) are described. Simple quasi-static strain localization problems characterized by unstable structural responses exhibiting multiple snap-backs are numerically simulated. A comparison with several well-known constraint equations (commonly used in non-linear finite element computations) is finally established. This allows for illustrating the main features of the proposed methods as well as their efficiency in controlling highly unstable embedded discontinuity finite element simulations

    Path-following methods for unstable structural responses induced by strain softening: a critical review

    No full text
    Path-following methods for describing unstable structural responses induced by strain-softening are discussed. The main ingredients of the formalisms introduced by Riks and Crisfield for arc-length methods for geometrical non-linearities are presented. A link between two ways (monolithic and partitioned) of solving the resulting augmented equilibrium problem is discussed based on the Sherman–Morrison formula. The original monolithic approach assumes that the path-following constraint equation is differentiable with respect to the unknown displacement field and load factor. However, when dealing with material non-linearities, it is often preferred to consider constraint equations controlling the maximum of a field defined on the computational domain (e.g., a scalar strain measure, the rate of variation of an internal variable of the constitutive model). In that case, differentiability cannot be guaranteed due to the presence of the maximum operator. This makes only the partitioned formulation usable. Several path-following constraint equations from the literature are presented, and the corresponding implementations in the finite element method are discussed. The different formulations are compared based on a simple two-dimensional test case of damage localization in a beam submitted to tension. A test case involving multiple snap-backs is illustrated, finally, to show the robustness of the considered formulations

    Partitioned path-following strategy for nonlinear structural analyses using the boundary element method

    No full text
    The appearance of snapping phenomena is frequent in structural analyses involving nonlinearities such as the propagation of localized damage zones, or cracks, as encountered in quasi-brittle materials. In the presence of snapping effects, the standard Newton-based algorithms cannot predict the equilibrium curves correctly by usual displacement or force control. This problem can be circumvented by using path-following techniques. This study proposes a numerical approach for nonlinear structural analysis based on the Boundary Element Method (BEM) coupled with a partitioned path-following strategy. In this strategy, the acting loads are divided into two groups: (a) those perfectly known and (b) those in which only the direction is known, while the magnitude (or load factor/multiplier) is determined to respect the equilibrium of the boundary fields (indirectly controlled) and an additional problem equation, the path-following constraint equation. The resulting nonlinear system is solved using an incremental iterative scheme. For each iteration, the corrections to the boundary fields are obtained in a partitioned manner. First, the portion coming from the unbalanced boundary fields is calculated. Then the correction resulting from a unit load in the direction of the load to be indirectly controlled is obtained. Finally, the load factor is calculated independently using the path-following constraint equation, which can be linear, nonlinear, differentiable, or not. In the numerical tests, the Control of the Nodal Displacement Increment (CNDI) is chosen as path-following constraint equation for the sake of illustration. The results show that the proposed approach can efficiently capture the equilibrium curve even in the presence of severe snap-backs. The approach is designed to be implemented in existing BEM codes straightforwardly, provided that the influence matrices can be accessed. Moreover, no additional pre-conditioning technique is required

    From diffuse damage to strain localization from an Eikonal Non-Local (ENL) Continuum Damage model with evolving internal length

    No full text
    International audienceIntegral Non-Local (INL) formulations are often used to regularize Continuum Damage computations, in the presence of stress softening for instance. The introduction of a characteristic/internal length allows for avoiding pathological mesh dependency. Some questions concerning the identification of the characteristic length, its possible evolution during damage process and the need for special treatments of non-locality operators near boundaries (e.g. edges, cracks) are however still open. A physical request is that material points separated by a crack (or an highly damaged zone) should not interact. Despite what is done in standard Integral Non-Local theories, this can be obtained by allowing non-local interactions to evolve depending on mechanical fields (e.g. damage, strain, stress). The Eikonal Non-Local (ENL) formulation provides a novel interpretation of damage dependent non-local interactions. Based on the Wentzel-Kramers-Brillouin (WKB) approximation for high-frequency wave propagation in a damaged medium, this formulation defines the interaction distances as the solution of a stationary damage dependent Eikonal equation. It allows for the modeling of non-local interactions which gradually vanish in damaged zones, thus ensuring a progressive transition from diffuse damage to fracture in a natural way. The numerical implementation and properties of this regularization technique are investigated and discussed. From a numerical viewpoint, a Fast Marching method is used to compute non-local interaction distances between Gauss integration points. Geodesic distances are then used to define the kernel of weighting function to be used in integral non-local averaging. Several numerical results of quasi-statics simulations of quasi-brittle fracture in isotropic media are presented
    corecore