75 research outputs found
Confronting Standard Models of Proto--Planetary Disks With New Mid--Infrared Sizes from the Keck Interferometer
We present near and mid-infrared interferometric observations made with the
Keck Interferometer Nuller and near-contemporaneous spectro-photometry from the
IRTF of 11 well known young stellar objects, several observed for the first
time in these spectral and spatial resolution regimes. With AU-level spatial
resolution, we first establish characteristic sizes of the infrared emission
using a simple geometrical model consisting of a hot inner rim and mid-infrared
disk emission. We find a high degree of correlation between the stellar
luminosity and the mid-infrared disk sizes after using near-infrared data to
remove the contribution from the inner rim. We then use a semi-analytical
physical model to also find that the very widely used "star + inner dust rim +
flared disk" class of models strongly fails to reproduce the SED and
spatially-resolved mid-infrared data simultaneously; specifically a more
compact source of mid-infrared emission is required than results from the
standard flared disk model. We explore the viability of a modification to the
model whereby a second dust rim containing smaller dust grains is added, and
find that the two-rim model leads to significantly improved fits in most cases.
This complexity is largely missed when carrying out SED modelling alone,
although detailed silicate feature fitting by McClure et al. 2013 recently came
to a similar conclusion. As has been suggested recently by Menu et al. 2015,
the difficulty in predicting mid-infrared sizes from the SED alone might hint
at "transition disk"-like gaps in the inner AU; however, the relatively high
correlation found in our mid-infrared disk size vs. stellar luminosity relation
favors layered disk morphologies and points to missing disk model ingredients
instead
Review of PSF reconstruction methods and application to post-processing
International audienceDetermining the PSF remains a key challenge for post adaptive-optics (AO) observations regarding the spatial, temporal and spectral variabilities of the AO PSF, as well as itx complex structure. This paper aims to provide a non-exhaustive but classified list of techniques and references that address this issue of PSF determination, with a particular scope on PSF reconstruction, or more generally pupil-plane-based approaches. We have compiled a large amount of references to synthesize the main messages and kept them at a top level. We also present applications of PSF reconstruction/models to post-processing, more especially PSF-fitting and deconvolution for which there is a fast progress in the community
Last technology and results from the IOTA interferometer
The infrared optical telescope array (IOTA), one of the most productive interferometers in term of science and new technologies was decommissioned in summer 2006. We discuss the testing of a low-resolution spectrograph coupled with the IOTA-3T integrated-optics beam combiner and some of the scientific results obtained from this instrument
Demonstrating predictive wavefront control with the Keck II near-infrared pyramid wavefront sensor
The success of ground-based instruments for high contrast exoplanet imaging depends on the degree to which adaptive optics (AO) systems can mitigate atmospheric turbulence. While modern AO systems typically suffer from millisecond time lags between wavefront measurement and control, predictive wavefront control (pWFC) is a means of compensating for those time lags using previous wavefront measurements, thereby improving the raw contrast in the post-coronagraphic science focal plane. A method of predictive control based on Empirical Orthogonal Functions (EOF) has previously been proposed and demonstrated on Subaru/SCExAO. In this paper we present initial tests of this method for application to the near-infrared pyramid wavefront sensor (PYWFS) recently installed in the Keck II AO system. We demonstrate the expected root-mean-square (RMS) wavefront error and contrast benefits of pWFC based on simulations, applying pWFC to on-sky telemetry data saved during commissioning of the PYWFS. We discuss how the performance varies as different temporal and spatial scales are included in the computation of the predictive filter. We further describe the implementation of EOF pWFC within the PYWFS dedicated real-time controller (RTC), and, via daytime testing at the observatory, we demonstrate the performance of pWFC in real time when pre-computed phase screens are applied to the deformable mirror (DM)
Analysis of Neptune's 2017 Bright Equatorial Storm
We report the discovery of a large (8500 km diameter) infrared-bright
storm at Neptune's equator in June 2017. We tracked the storm over a period of
7 months with high-cadence infrared snapshot imaging, carried out on 14 nights
at the 10 meter Keck II telescope and 17 nights at the Shane 120 inch reflector
at Lick Observatory. The cloud feature was larger and more persistent than any
equatorial clouds seen before on Neptune, remaining intermittently active from
at least 10 June to 31 December 2017. Our Keck and Lick observations were
augmented by very high-cadence images from the amateur community, which
permitted the determination of accurate drift rates for the cloud feature. Its
zonal drift speed was variable from 10 June to at least 25 July, but remained a
constant m s from 30 September until at least 15
November. The pressure of the cloud top was determined from radiative transfer
calculations to be 0.3-0.6 bar; this value remained constant over the course of
the observations. Multiple cloud break-up events, in which a bright cloud band
wrapped around Neptune's equator, were observed over the course of our
observations. No "dark spot" vortices were seen near the equator in HST imaging
on 6 and 7 October. The size and pressure of the storm are consistent with
moist convection or a planetary-scale wave as the energy source of convective
upwelling, but more modeling is required to determine the driver of this
equatorial disturbance as well as the triggers for and dynamics of the observed
cloud break-up events.Comment: 42 pages, 14 figures, 6 tables; Accepted to Icaru
- …