53 research outputs found

    Anomaly mediated neutrino-photon interactions at finite baryon density

    Full text link
    We propose new physical processes based on the axial vector anomaly and described by the Wess-Zumino-Witten term that couples the photon, Z-boson, and the omega-meson. The interaction takes the form of a pseudo-Chern-Simons term, ∌ϔΌΜρσωΌZÎœFρσ\sim \epsilon_{\mu\nu\rho\sigma}\omega^\mu Z^\nu F^{\rho\sigma}. This term induces neutrino-photon interactions at finite baryon density via the coupling of the Z-boson to neutrinos. These interactions may be detectable in various laboratory and astrophysical arenas. The new interactions may account for the MiniBooNE excess. They also produce a competitive contribution to neutron star cooling at temperatures >10^9 K. These processes and related axion--photon interactions at finite baryon density appear to be relevant in many astrophysical regimes.Comment: 4 pages, 2 figures; references adde

    Investigating white matter fibre density and morphology using fixel-based analysis

    Get PDF
    Voxel-based analysis of diffusion MRI data is increasingly popular. However, most white matter voxels contain contributions from multiple fibre populations (often referred to as crossing fibres), and therefore voxel-averaged quantitative measures (e.g. fractional anisotropy) are not fibre-specific and have poor interpretability. Using higher-order diffusion models, parameters related to fibre density can be extracted for individual fibre populations within each voxel (‘fixels’), and recent advances in statistics enable the multi-subject analysis of such data. However, investigating within-voxel microscopic fibre density alone does not account for macroscopic differences in the white matter morphology (e.g. the calibre of a fibre bundle). In this work, we introduce a novel method to investigate the latter, which we call fixel-based morphometry (FBM). To obtain a more complete measure related to the total number of white matter axons, information from both within-voxel microscopic fibre density and macroscopic morphology must be combined. We therefore present the FBM method as an integral piece within a comprehensive fixel-based analysis framework to investigate measures of fibre density, fibre-bundle morphology (cross-section), and a combined measure of fibre density and cross-section. We performed simulations to demonstrate the proposed measures using various transformations of a numerical fibre bundle phantom. Finally, we provide an example of such an analysis by comparing a clinical patient group to a healthy control group, which demonstrates that all three measures provide distinct and complementary information. By capturing information from both sources, the combined fibre density and cross-section measure is likely to be more sensitive to certain pathologies and more directly interpretable

    Stellar evolution and large extra dimensions

    Full text link
    We discuss in detail the information on large extra dimensions which can be derived in the framework of stellar evolution theory and observation. The main effect of large extra dimensions arises from the production of the Kaluza-Klein (KK) excitations of the graviton. The KK-graviton and matter interactions are of gravitational strength, so the KK states never become thermalized and always freely escape. In this paper we first pay attention to the sun. Production of KK gravitons is incompatible with helioseismic constraints unless the 4+n dimensional Planck mass M_s exceeds 300 Gev/c^2. Next we show that stellar structures in their advanced phase of H burning evolution put much more severe constraints, M_s > 3-4 TeV/c^2, improving on current laboratory lower limits.Comment: 13 pages RevTeX file, 8 figures ps file

    Primordial Magnetic Fields from Dark Energy

    Get PDF
    Evidences indicate that the dark energy constitutes about two thirds of the critical density of the universe. If the dark energy is an evolving pseudo scalar field that couples to electromagnetism, a cosmic magnetic seed field can be produced via spinoidal instability during the formation of large-scale structures.Comment: Discussion on back reaction is added to match the published versio

    Thermal Conversion of Sugarcane Bagasse Coupled with Vapor Phase Hydrotreatment over Nickel-Based Catalysts: A Comprehensive Characterization of Upgraded Products

    Get PDF
    In the present work, we compared the chemical profile of the organic compounds produced in non-catalytic pyrolysis of sugarcane bagasse at 500 °C with those obtained by the in-line catalytic upgrading of the vapor phase at 350 °C. The influence over the chemical profile was evaluated by testing two Ni-based catalysts employing an inert atmosphere (N2) and a reactive atmosphere (H2) under atmospheric pressure with yields of the liquid phase varying from 55 to 62%. Major changes in the chemical profile were evidenced in the process under the H2 atmosphere, wherein a higher degree of deoxygenation was identified due to the effect of synergistic action between the catalyst and H2. The organic fraction of the liquid phase, called bio-oil, showed an increase in the relative content of alcohols and phenolic compounds in the GC/MS fingerprint after the upgrading process, corroborating with the action of the catalytic process upon the compounds derived from sugar and carboxylic acids. Thus, the thermal conversion of sugarcane bagasse, in a process under an H2 atmosphere and the presence of Ni-based catalysts, promoted higher deoxygenation performance of the pyrolytic vapors, acting mainly through sugar dehydration reactions. Therefore, the adoption of this process can potentialize the use of this waste biomass to produce a bio-oil with higher content of phenolic species, which have a wide range of applications in the energy and industrial sectors

    The BMV experiment : a novel apparatus to study the propagation of light in a transverse magnetic field

    Full text link
    In this paper, we describe in detail the BMV (Bir\'efringence Magn\'etique du Vide) experiment, a novel apparatus to study the propagation of light in a transverse magnetic field. It is based on a very high finesse Fabry-Perot cavity and on pulsed magnets specially designed for this purpose. We justify our technical choices and we present the current status and perspectives.Comment: To be published in the European Physical Journal

    New solar axion search in CAST with 4^4He filling

    Get PDF
    The CERN Axion Solar Telescope (CAST) searches for a→γa\to\gamma conversion in the 9 T magnetic field of a refurbished LHC test magnet that can be directed toward the Sun. Two parallel magnet bores can be filled with helium of adjustable pressure to match the X-ray refractive mass mÎłm_\gamma to the axion search mass mam_a. After the vacuum phase (2003--2004), which is optimal for maâ‰Č0.02m_a\lesssim0.02 eV, we used 4^4He in 2005--2007 to cover the mass range of 0.02--0.39 eV and 3^3He in 2009--2011 to scan from 0.39--1.17 eV. After improving the detectors and shielding, we returned to 4^4He in 2012 to investigate a narrow mam_a range around 0.2 eV ("candidate setting" of our earlier search) and 0.39--0.42 eV, the upper axion mass range reachable with 4^4He, to "cross the axion line" for the KSVZ model. We have improved the limit on the axion-photon coupling to gaÎł<1.47×10−10GeV−1g_{a\gamma}< 1.47\times10^{-10} {\rm GeV}^{-1} (95% C.L.), depending on the pressure settings. Since 2013, we have returned to vacuum and aim for a significant increase in sensitivity.Comment: CAST Collaboration 6 pages 3 figure

    CAST solar axion search with 3^He buffer gas: Closing the hot dark matter gap

    Get PDF
    The CERN Axion Solar Telescope (CAST) has finished its search for solar axions with 3^He buffer gas, covering the search range 0.64 eV < m_a <1.17 eV. This closes the gap to the cosmological hot dark matter limit and actually overlaps with it. From the absence of excess X-rays when the magnet was pointing to the Sun we set a typical upper limit on the axion-photon coupling of g_ag < 3.3 x 10^{-10} GeV^{-1} at 95% CL, with the exact value depending on the pressure setting. Future direct solar axion searches will focus on increasing the sensitivity to smaller values of g_a, for example by the currently discussed next generation helioscope IAXO.Comment: 5 pages, 2 figures. Last version uploade

    Discrete symmetries, invisible axion and lepton number symmetry in an economic 3-3-1 model

    Full text link
    We show that Peccei-Quinn and lepton number symmetries can be a natural outcome in a 3-3-1 model with right-handed neutrinos after imposing a Z_11 x Z_2 symmetry. This symmetry is suitably accommodated in this model when we augmented its spectrum by including merely one singlet scalar field. We work out the breaking of the Peccei-Quinn symmetry, yielding the axion, and study the phenomenological consequences. The main result of this work is that the solution to the strong CP problem can be implemented in a natural way, implying an invisible axion phenomenologically unconstrained, free of domain wall formation and constituting a good candidate for the cold dark matter.Comment: 17 pages, Revtex

    Horizontal Branch Stars: The Interplay between Observations and Theory, and Insights into the Formation of the Galaxy

    Full text link
    We review HB stars in a broad astrophysical context, including both variable and non-variable stars. A reassessment of the Oosterhoff dichotomy is presented, which provides unprecedented detail regarding its origin and systematics. We show that the Oosterhoff dichotomy and the distribution of globular clusters (GCs) in the HB morphology-metallicity plane both exclude, with high statistical significance, the possibility that the Galactic halo may have formed from the accretion of dwarf galaxies resembling present-day Milky Way satellites such as Fornax, Sagittarius, and the LMC. A rediscussion of the second-parameter problem is presented. A technique is proposed to estimate the HB types of extragalactic GCs on the basis of integrated far-UV photometry. The relationship between the absolute V magnitude of the HB at the RR Lyrae level and metallicity, as obtained on the basis of trigonometric parallax measurements for the star RR Lyrae, is also revisited, giving a distance modulus to the LMC of (m-M)_0 = 18.44+/-0.11. RR Lyrae period change rates are studied. Finally, the conductive opacities used in evolutionary calculations of low-mass stars are investigated. [ABRIDGED]Comment: 56 pages, 22 figures. Invited review, to appear in Astrophysics and Space Scienc
    • 

    corecore