128 research outputs found

    OmicsVolcano: software for intuitive visualization and interactive exploration of high-throughput biological data

    Get PDF
    Advances in omics technologies have generated exponentially larger volumes of biological data; however, their analyses and interpretation are limited to computationally proficient scientists. We created OmicsVolcano, an interactive open-source software tool to enable visualization and exploration of high-throughput biological data, while highlighting features of interest using a volcano plot interface. In contrast to existing tools, our software and user-interface design allow it to be used without requiring any programming skills to generate high-quality and presentation-ready images

    Evolved orthogonal ribosome purification for in vitro characterization

    Get PDF
    We developed orthogonal ribosome−mRNA pairs in which the orthogonal ribosome (O-ribosome) specifically translates the orthogonal mRNA and the orthogonal mRNA is not a substrate for cellular ribosomes. O-ribosomes have been used to create new cellular circuits to control gene expression in new ways, they have been used to provide new information about the ribosome, and they form a crucial part of foundational technologies for genetic code expansion and encoded and evolvable polymer synthesis in cells. The production of O-ribosomes in the cell makes it challenging to study the properties of O-ribosomes in vitro, because no method exists to purify functional O-ribosomes from cellular ribosomes and other cellular components. Here we present a method for the affinity purification of O-ribosomes, via tagging of the orthogonal 16S ribosomal RNA. We demonstrate that the purified O-ribosomes are pure by primer extension assays, and structurally homogenous by gel electrophoresis and sucrose gradients. We demonstrate the utility of this purification method by providing a preliminary in vitro characterization of Ribo-X, an O-ribosome previously evolved for enhanced unnatural amino acid incorporation in response to amber codons. Our data suggest that the basis of Ribo-X’s in vivo activity is a decreased affinity for RF1

    Functional epitopes at the ribosome subunit interface

    Get PDF
    The ribosome is a 2.5-MDa molecular machine that synthesizes cellular proteins encoded in mRNAs. The 30S and 50S subunits of the ribosome associate through structurally defined intersubunit bridges burying 6,000 Å^2, 80% of which is buried in conserved RNA-RNA interactions. Intersubunit bridges bind translation factors, may coordinate peptide bond formation and translocation and may be actively remodeled in the post-termination complex, but the functional importance of numerous 30S bridge nucleotides had been unknown. We carried out large-scale combinatorial mutagenesis and in vivo selections on 30S nucleotides that form RNA-RNA intersubunit bridges in the Escherichia coli ribosome. We determined the covariation and functional importance of bridge nucleotides, allowing comparison of the structural interface and phylogenetic data to the functional epitope. Our results reveal how information for ribosome function is partitioned across bridges, and suggest a subset of nucleotides that may have measurable effects on individual steps of the translational cycle

    Is mitochondrial gene expression coordinated or stochastic?

    Get PDF
    © 2018 Portland Press Ltd. All rights reserved. Mitochondrial biogenesis is intimately dependent on the coordinated expression of the nuclear and mitochondrial genomes that is necessary for the assembly and function of the respiratory complexes to produce most of the energy required by cells. Although highly compacted in animals, the mitochondrial genome and its expression are essential for survival, development, and optimal energy production. The machinery that regulates gene expression within mitochondria is localised within the same compartment and, like in their ancestors, the bacteria, this machinery does not use membrane-based compartmentalisation to order the gene expression pathway. Therefore, the lifecycle of mitochondrial RNAs from transcription through processing, maturation, translation to turnover is mediated by a gamut of RNA-binding proteins (RBPs), all contained within the mitochondrial matrix milieu. Recent discoveries indicate that multiple processes regulating RNA metabolism occur at once but since mitochondria have a new complement of RBPs, many evolved de novo from nuclear genes, we are left wondering how co-ordinated are these processes? Here, we review recently identified examples of the co-ordinated and stochastic processes that govern the mitochondrial transcriptome. These new discoveries reveal the complexity of mitochondrial gene expression and the need for its in-depth exploration to understand how these organelles can respond to the energy demands of the cell

    Long noncoding RNAs are generated from the mitochondrial genome and regulated by nuclear-encoded proteins

    Get PDF
    Human mitochondrial long noncoding RNAs (lncRNAs) have not been described to date. By analysis of deep-sequencing data we have identified three lncRNAs generated from the mitochondrial genome and confirmed their expression by Northern blotting and strand-specific qRT-PCR. We show that the abundance of these lncRNAs is comparable to their complementary mRNAs and that nuclear-encoded mitochondrial proteins involved in RNA processing regulate their expression. We also identify the 5′ and 3′ transcript ends of the three lncRNAs and show that mitochondrial RNase P protein 1 (MRPP1) is important for the processing of these transcripts. Finally, we show that mitochondrial lncRNAs form intermolecular duplexes and that their abundance is cell- and tissue-specific, suggesting a functional role in the regulation of mitochondrial gene expression. Published by Cold Spring Harbor Laboratory Press

    The FASTK family proteins fine-tune mitochondrial RNA processing.

    Get PDF
    Funder: The Cancer Council of Western AustraliaFunder: UWA Postgraduate ScholarshipsTranscription of the human mitochondrial genome and correct processing of the two long polycistronic transcripts are crucial for oxidative phosphorylation. According to the tRNA punctuation model, nucleolytic processing of these large precursor transcripts occurs mainly through the excision of the tRNAs that flank most rRNAs and mRNAs. However, some mRNAs are not punctuated by tRNAs, and it remains largely unknown how these non-canonical junctions are resolved. The FASTK family proteins are emerging as key players in non-canonical RNA processing. Here, we have generated human cell lines carrying single or combined knockouts of several FASTK family members to investigate their roles in non-canonical RNA processing. The most striking phenotypes were obtained with loss of FASTKD4 and FASTKD5 and with their combined double knockout. Comprehensive mitochondrial transcriptome analyses of these cell lines revealed a defect in processing at several canonical and non-canonical RNA junctions, accompanied by an increase in specific antisense transcripts. Loss of FASTKD5 led to the most severe phenotype with marked defects in mitochondrial translation of key components of the electron transport chain complexes and in oxidative phosphorylation. We reveal that the FASTK protein family members are crucial regulators of non-canonical junction and non-coding mitochondrial RNA processing

    Fidelity and coordination of mitochondrial protein synthesis in health and disease

    Get PDF
    The evolutionary acquisition of mitochondria has given rise to the diversity of eukaryotic life. Mitochondria have retained their ancestral α-proteobacterial traits through the maintenance of double membranes and their own circular genome. Their genome varies in size from very large in plants to the smallest in animals and their parasites. The mitochondrial genome encodes essential genes for protein synthesis and has to coordinate its expression with the nuclear genome from which it sources most of the proteins required for mitochondrial biogenesis and function. The mitochondrial protein synthesis machinery is unique because it is encoded by both the nuclear and mitochondrial genomes thereby requiring tight regulation to produce the respiratory complexes that drive oxidative phosphorylation for energy production. The fidelity and coordination of mitochondrial protein synthesis are essential for ATP production. Here we compare and contrast the mitochondrial translation mechanisms in mammals and fungi to bacteria and reveal that their diverse regulation can have unusual impacts on the health and disease of these organisms. We highlight that in mammals the rate of protein synthesis is more important than the fidelity of translation, enabling coordinated biogenesis of the mitochondrial respiratory chain with respiratory chain proteins synthesised by cytoplasmic ribosomes. Changes in mitochondrial protein fidelity can trigger the activation of the diverse cellular signalling networks in fungi and mammals to combat dysfunction in energy conservation. The physiological consequences of altered fidelity of protein synthesis can range from liver regeneration to the onset and development of cardiomyopathy. (Figure presented.)

    Development of a pathway to facilitate gastrostomy insertion for patients with MND

    Get PDF
    A pathway has been developed using a multidisciplinary group from within specialist palliative care to ensure a comprehensive approach to the insertion of gastromy tubes for patients with motor neurone disease (MND) with swallowing difficulties. The pathway has ensured that there is a coordinated approach and the professionals involved are clear as to their responsibilities in the discussion and planning of the insertion, ensuring the best support for the patient and family
    corecore