207 research outputs found

    Hierarchical Time-Varying Estimation of Asset Pricing Models

    Get PDF
    This paper presents a new hierarchical methodology for estimating multi factor dynamic asset pricing models. The approach is loosely based on the sequential Fama–MacBeth approach and developed in a kernel regression framework. However, the methodology uses a very flexible bandwidth selection method which is able to emphasize recent data and information to derive the most appropriate estimates of risk premia and factor loadings at each point in time. The choice of bandwidths and weighting schemes are achieved by a cross-validation procedure; this leads to consistent estimators of the risk premia and factor loadings. Additionally, an out-of-sample forecasting exercise indicates that the hierarchical method leads to a statistically significant improvement in forecast loss function measures, independently of the type of factor considered

    Volatility forecasting in the Chinese commodity futures market with intraday data

    Get PDF
    Given the unique institutional regulations in the Chinese commodity futures market as well as the characteristics of the data it generates, we utilize contracts with three months to delivery, the most liquid contract series, to systematically explore volatility forecasting for aluminum, copper, fuel oil, and sugar at the daily and three intraday sampling frequencies. We adopt popular volatility models in the literature and assess the forecasts obtained via these models against alternative proxies for the true volatility. Our results suggest that the long memory property is an essential feature in the commodity futures volatility dynamics and that the ARFIMA model consistently produces the best forecasts or forecasts not inferior to the best in statistical terms

    Impact of Investor's Varying Risk Aversion on the Dynamics of Asset Price Fluctuations

    Full text link
    While the investors' responses to price changes and their price forecasts are well accepted major factors contributing to large price fluctuations in financial markets, our study shows that investors' heterogeneous and dynamic risk aversion (DRA) preferences may play a more critical role in the dynamics of asset price fluctuations. We propose and study a model of an artificial stock market consisting of heterogeneous agents with DRA, and we find that DRA is the main driving force for excess price fluctuations and the associated volatility clustering. We employ a popular power utility function, U(c,γ)=c1γ11γU(c,\gamma)=\frac{c^{1-\gamma}-1}{1-\gamma} with agent specific and time-dependent risk aversion index, γi(t)\gamma_i(t), and we derive an approximate formula for the demand function and aggregate price setting equation. The dynamics of each agent's risk aversion index, γi(t)\gamma_i(t) (i=1,2,...,N), is modeled by a bounded random walk with a constant variance δ2\delta^2. We show numerically that our model reproduces most of the ``stylized'' facts observed in the real data, suggesting that dynamic risk aversion is a key mechanism for the emergence of these stylized facts.Comment: 17 pages, 7 figure

    Measuring and Modeling Risk Using High-Frequency Data

    Get PDF
    Measuring and modeling financial volatility is the key to derivative pricing, asset allocation and risk management. The recent availability of high-frequency data allows for refined methods in this field. In particular, more precise measures for the daily or lower frequency volatility can be obtained by summing over squared high-frequency returns. In turn, this so-called realized volatility can be used for more accurate model evaluation and description of the dynamic and distributional structure of volatility. Moreover, non-parametric measures of systematic risk are attainable, that can straightforwardly be used to model the commonly observed time-variation in the betas. The discussion of these new measures and methods is accompanied by an empirical illustration using high-frequency data of the IBM incorporation and of the DJIA index

    Does final energy demand in Portugal exhibit long memory? A fractional integration analysis

    Get PDF
    In this paper, we measure the degree of fractional integration in final energy demand in Portugal using an ARFIMA model with and without adjustments for seasonality. We consider aggregate energy demand as well as final demand for petroleum, electricity, coal, and natural gas. Our findings suggest the presence of long memory in all of the components of energy demand. All fractional-difference param- eters are positive and lower than 0.5 indicating that the series are stationary, although with mean reversion patterns slower than in the typical short-run processes. These results have important implications for the design of energy policies. As a result of the long-memory in final energy demand, the effects of temporary policy shocks will tend to disappear slowly. This means that even transitory shocks have long lasting effects. Given the temporary nature of these effects, however, permanent effects on final energy demand require permanent policies. This is unlike what would be suggested by the more standard, but much more limited, unit root approach, which would incorrectly indicate that even transitory policies would have permanent effects.info:eu-repo/semantics/publishedVersio

    Darwin's Manufactory Hypothesis Is Confirmed and Predicts the Extinction Risk of Extant Birds

    Get PDF
    In the Origin of Species Darwin hypothesized that the “manufactory” of species operates at different rates in different lineages and that the richness of taxonomic units is autocorrelated across levels of the taxonomic hierarchy. We confirm the manufactory hypothesis using a database of all the world's extant avian subspecies, species and genera. The hypothesis is confirmed both in correlations across all genera and in paired comparisons controlling for phylogeny. We also find that the modern risk of extinction, as measured by “Red List” classifications, differs across the different categories of genera identified by Darwin. Specifically, species in “manufactory” genera are less likely to be threatened, endangered or recently extinct than are “weak manufactory” genera. Therefore, although Darwin used his hypothesis to investigate past evolutionary processes, we find that the hypothesis also foreshadows future changes to the evolutionary tree
    corecore