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Abstract: This paper presents a new hierarchical methodology for estimating multi factor dynamic
asset pricing models. The approach is loosely based on the sequential Fama–MacBeth approach
and developed in a kernel regression framework. However, the methodology uses a very flexible
bandwidth selection method which is able to emphasize recent data and information to derive the
most appropriate estimates of risk premia and factor loadings at each point in time. The choice of
bandwidths and weighting schemes are achieved by a cross-validation procedure; this leads to con-
sistent estimators of the risk premia and factor loadings. Additionally, an out-of-sample forecasting
exercise indicates that the hierarchical method leads to a statistically significant improvement in
forecast loss function measures, independently of the type of factor considered.

Keywords: asset pricing model; Fama–MacBeth model; estimation of beta; kernel-weighted regres-
sions; cross-validation; time-varying parameter regressions

1. Introduction

The concept of a time-varying risk premium is a standard idea in the literature of
asset pricing finance. For example, see Campbell and Shiller (1988), Ferson and Harvey
(1991), Lewellen and Nagel (2006) and many others. The fundamental method in empirical
finance is due to Fama and MacBeth (1973), who estimated equity risk premia by a cross-
sectional regression method, where the pricing of different types of risk factors is to be
assumed constant.

This paper extends the Fama and MacBeth (1973) approach by developing a sequential
hierarchical structure, which allows the risk factor estimates to change over time in a
flexible yet tractable manner, inside a kernel-weighted regression framework. This method
maintains the Fama and MacBeth (1973) stages of estimating risk factors (or betas) from
a time-series regression and then the factor loadings (or gammas) from cross-sectional
regressions. An additional aspect of the methodology presented here is an additional stage
for the selection of optimal bandwidths via a cross-validation procedure. One contribution
is to employ a flexible approach for bandwidth selection, which essentially determines
the speed of updates of the betas (risk factors). A similar methodology is also applied
to determine the factor loadings, identifying an optimal time-varying bandwidth level
optimised for each asset at each time point. This avoids imposing any a priori structure
and allows us to incorporate economic and financial change, that is relevant for the pricing
of assets, in a natural, data-orientated way. The approach is really hierarchical, since
there is an initial consideration of structural change by permitting time variation in the
estimation of the parameters and then, in a second stage, the bandwidth is also allowed to be
internally changed. The method can also be seen as an extension of the least squares rolling
window regression approach, which has extensively been used in empirical finance (e.g.,
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Jagannathan and Wang (1996) and Lewellen and Nagel (2006)). The empirical results in this
study overwhelmingly indicate the importance of removing the restriction of constant betas,
in line with Fama and French (2020); the full superiority of the hierarchical methodology
becomes apparent in terms of prediction of out-of-sample returns for a wide range of assets.
The results show that the time variation of risk associated with stocks and portfolios can be
captured with the flexible methods described in this paper. It is shown that the hierarchical
approach in this paper is able to produce an increase in the forecasting performance between
4% and 7% greater than the conventional methods.

The remainder of this paper is organized as follows: Section 2 provides a discussion
of the contribution of this paper and also describes the standard Fama and MacBeth (1973)
approach. Section 3 presents the hierarchical procedure. After describing the data in
Section 4, the empirical application of the methodology is described in the next section,
which also includes a series of robustness checks.

2. Background Literature

The benchmark Capital Asset Pricing Model, or (CAPM), by Sharpe (1964), Lintner (1965)
and Markowitz (1968), implies that the expected excess return on any asset is influenced
by its sensitivity to the market, which is measured by the beta coefficient, times the market
risk premia. Traditionally, this beta is considered invariant over time and represents
the covariance between the return of the asset and the return on the market portfolio.
The basic model has been criticised by Black et al. (1972), Fama and French (1992) and
Fama and MacBeth (1973), among others, on the grounds that only one factor, the market
beta, is inadequate to describe the systemic risk. Hence, many researchers have attempted
to improve the basic CAPM by the introduction of other factors. Most notably, there is the
three-factor model by Fama and French (1992), which introduced the size, or SMB factor
(positive returns are related to small size), and the high minus low, HML, factor (high
book-to-market ratios are associated with higher returns). On the other hand, Carhart (1997)
introduced a fourth momentum factor, MOM, which describes the tendency of a stock
price to continue recent trends. Several other factors have been proposed and investigated
in the literature; see Harvey et al. (2016) and Harvey and Liu (2019) for more details.

Further developments with extending the basic CAPM have centred on implementing
more flexible estimation strategies where the beta coefficient(s) are not necessarily assumed
to be constant across time or space. For example, see Harvey (1989), Ferson and Harvey
(1991), Bollerslev et al. (1988) and Fama and French (1997), Fama and French (2006), who
have suggested that a constant beta estimated using OLS does not capture the dynamics
of the beta and is unable to satisfactorily explain the cross-section of average returns
on equities.

Adrian and Franzoni (2005) argue that models without time-evolving betas fail to
capture investor characteristics and may lead to inaccurate estimates of the true underlying
risk. There are numerous factors that contribute to the variation in beta, including regu-
lation, economic and monetary policies, and exchange rates. Many researchers, such as
Zolotoy (2011), show that variations in betas are more evident around important news an-
nouncements. Jagannathan and Wang (1996), Lettau and Ludvigson (2001b) and Beach (2011)
show that the conditional CAPM with time-varying beta generally outperforms an uncon-
ditional CAPM with a constant beta.

One technique that is often used is to take into account changes in the systematic risk
of an asset through a rolling window OLS regression (e.g., Fama and MacBeth (1973) and
Lewellen and Nagel (2006)). While the former paper uses monthly returns over a five-year
window, the latter employs returns at different horizons to capture the different rate of
variation of risk over a variety of interval lengths (monthly, quarterly and semi-annually).
The main difficulty of the rolling window regression approach is the attempt to capture
local variations by having short intervals of data, which is incompatible with the desire
of having tight standard errors, hence tight confidence intervals on the estimated beta
parameters. Other researchers have directly exploited the covariation between the market
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and other assets; e.g., Engle (2002) and Bali and Engle (2010) estimated time-varying betas
using multivariate dynamic conditional correlation methods to exploit correlations between
cross-sectional average returns of various factor portfolios. The usage of a realized beta
allows us to adjust information instantaneously.

As previously described, the variation in the beta coefficients can be modelled through
the evolution of the conditional distribution returns as a function of lagged state variables (see
Jagannathan and Wang (1996), Ferson and Harvey (1999) and Adrian and Franzoni (2005),
among others). In all cases, the authors explicitly specify the covariance between the market
and portfolio returns as affine functions of pre-determined state variables. Jagannathan
and Wang (1996), instead, develop a conditional version of the CAPM, augmented by a
human–capital factor, and show that it explains a substantial fraction of the cross-sectional
variation in the returns on 100 portfolios sorted by size and book-to-market ratio . Further,
Adrian and Franzoni (2005) admit unobservable long-run changes in risk factor loadings,
given by a learning process of rational in investors. Recently, Fama and French (2020)
have shown that models that use only cross-sectional factors provide better descriptions of
average returns than time-series models that use time-series factors. This has been proven
to be valid when considering prespecified and optimised time-varying loadings . The main
drawback of these parametric approaches is that they require the correct specification for
the functional form of the betas, or, in other words, they need to identify the right state
variables. As pointed out by Ghysels (1998) and Harvey (2001), models with misspecified
betas often feature larger pricing errors than models with constant betas.

Recent non-parametric approaches have been proposed to allow the CAPM parameters
to evolve smoothly over time. Ang and Kristensen (2012) used this methodology to
investigate the distributions for conditional and for long-run alphas and betas, averaged
over time. They used different bandwidths for conditional and long estimates in order for
any finite-sample biases and variances to vanish. In addition, kernel-smoothing estimators
have the appealing feature that they nest, as a special case, rolling window estimates
of betas (see, for example, Ferson and Harvey 1991; Petkova and Zhang 2005, among
many others).

The methodology uses Giraitis et al. (2014, 2015, 2018). They provide a rigorous
justification for using kernel methods to estimate structural change when the parameters
that undergo change are not governed by a deterministic function of time, allowing a wide
class of stochastic processes that are characterised by persistence to be performed.

Fama and MacBeth Formulation

The seminal paper by Fama and MacBeth (1973) advocates a two-step procedure
to estimate risk premia in the multi-factor asset pricing setting. The model assumes the
coefficients are constant and estimates them using ordinary least square regression. The
first step regresses the excess risk-free return of each asset, or portfolio, on various factors
over time to determine the exposure of each factor; hence, it estimates the beta parameters.
The second step consists of a cross-sectional regression of the excess return of the assets
against the factor exposures, or betas, at each point in time, in order to obtain a time series
of risk premium coefficients, or gammas, for each factor. The method by Fama and MacBeth
(1973) averages these coefficients to obtain the expected premium for a unit of each risk
factor and testing if these are appropriately priced by the market. More details are available
in Appendix A.

This two-pass cross-sectional method is subject to an error-in-variable (EIV) problem,
due to using estimated betas in the second step. The procedure can produce consistent
risk premium estimators. However, as the time-series sample size tends to infinity and
the cross-sectional size is fixed, the traditional FMcB standard errors are not consistent,
requiring an asymptotic bias correction. Recently, Adrian et al. (2015) used the weighted
kernel estimator by Ang and Kristensen (2012) to propose a methodology more robust
to misspecification errors. Their empirical application features good pricing properties
across stocks and bonds and shows notable time variation of expected returns associated
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with highly significant dynamic price of risk parameters. Moreover, they showed that
the Gaussian kernel estimator yields smaller pricing errors than simple rolling window
regressions for both specifications with constant and time-varying prices of risk.

3. Hierarchical Methodology

The main contribution of this paper is to develop a flexible methodology, inside the
kernel regression framework, to easily allow users to have time variation in both the betas
and gammas of the baseline Fama and MacBeth (1973) approach.

The main tool to achieve this is to have a flexible bandwidth parameter which es-
sentially controls the weight given to local information for updating the beta and gamma
coefficients. This paper optimises the choice of bandwidth and is based on out-of-sample
cross-validation methods, which allow the bandwidth to change over time. The novelty of
the approach is to identify an optimal time-varying bandwidth for each asset that helps to
reduce the forecast errors of the risk premia via a more accurate estimation of the factor
loadings. In the first step, we use a cross-validation approach to identify the optimal
asset-specific bandwidth. In the second step, asset returns are regressed in the time series
on risk factors, using the bandwidths obtained before, generating the time-varying risk
betas for each asset. In the final step, the price of the risk parameters are computed by
regressing the excess return on the betas from the time-series regression, cross-sectionally.

3.1. Cross-Validation—Bandwidth Choice

As previously mentioned, an important aspect of this paper is the use of cross-
validation to search for the most appropriate bandwidth in the kernel function that sets the
degree of smoothness of the estimates. This parameter turns out to be critical in providing
the appropriate degree of persistence in determining the memory of the window used for
the estimation of the time-varying coefficient of the model. Following previous literature,
this paper considers the classical three factors of the model proposed by Fama and French
(1995): market factor, MRKT, size factor, SML, and book-to-market factor, HML1.

The first part of the hierarchical approach is to calculate the time-varying parameters
(TVP) associated with the coefficients of the factors (βs). The method used here is based on
a kernel-weighted regression; hence,(

Ri,t − R f ,t

)
h
= β1,t,i,hFMRKT,t + β2,i,t,hFSMB,t + β3,i,t,hFHML,t + ui,t,h, (1)

where i ∈ [1 : N] is the number of assets, t ∈ [1 : T] is the period of time, k ∈ [1 : 3]
is the number factors and h is the bandwidth parameter, to be discussed later, such that
h ∈ [0.05, 0.95] with an interval of 0.05. Further, it is generally assumed throughout the
paper that un,t+1 is i.i.d.(0, σ2). The β parameters are estimated by an extension of the
methodology by Giraitis et al. (2014), summarized in the Appendix B of this paper. Hence,
the beta for the kth factor is estimated by

β̂k,t,i,h =
∑T

t=1 K( t−j
T )
(

Ri,t − R f ,t

)
Fk,t

∑T
t=1 K( t−j

H )F2
k,t

, (2)

where K( t−j
H ) is assumed to be a Gaussian kernel function. The bandwidth, H, represents

the degree of smoothness of the estimates. In other terms, if the bandwidth is small, the
estimates are under-smoothed, with high variability; otherwise, if the value of H is big,
the resulting estimators are over-smoothed and farther from the real function. Ang and
Kristensen (2012) suggested to optimise the choice of the bandwidth for conditional and
long estimates in order to reduce any finite-sample biases and variances. Giraitis et al.
(2014, 2018), instead, proved, under very mild condition, that, if the bandwidth is H = Th,
with the bandwidth parameter h = 0.5, the estimator shows desirable properties, such as
consistency and asymptotic normality; additionally, it provides valid standard errors.
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The method in this paper is agnostic on the choice of the parameter h and then on the
bandwidth. An additional insight is to allow the parameter to vary across time and assets.
A cross-validation procedure is used to identify the time-varying bandwidth optimised for
each asset. Therefore, the optimal parameter hopt

i,t is found for each asset and time period,
selected from an out-of-sample, one-step ahead forecasting comparison over a grid search
of h, which incorporates 19 different values of h, for the grid of h ∈ [0.05; 0.95], with an
interval of 0.05 for each grid.

For the remaining of the paper, the optimisation of the bandwidth is meant to relate to
the choice of the parameter h inside the bandwidth formula H = Th.

At the end of this stage, the process generates, for each asset i, a time series of
beta estimates for different values of the bandwidth parameter h. These estimated betas
allow us to identify the price of risk factor loadings for different values of h, γh using the
following equation:(

Ri,t − R f ,t

)
h
= γ0,h + β̂′1,t,i,hγ1,t,h + β̂′2,t,i,hγ2,t,h + β̂′3,t,i,hγ3,t,h + εn,t,h, (3)

where εn,t,h is assumed to be i.i.d.(0, σ2
ε ). This process generates k + 1 series of γs (including

the constant) for every value of the bandwidth parameter h. Then, the cross-validation
procedure compares the forecasting performance of the competing models via the compu-
tation of the forecast errors ei,t+1,h. The initial T0 observations are the training period, while
the remaining ones, (T − T0), define the out-of-sample period. The training period is fixed
at 60 observations, or 5 years of data; we also performed robustness tests with different
values of T0, 120 and 180. Then, the one-step ahead forecast for each asset is obtained from
the following regression:

̂(
Ri,t+1 − R f ,t+1

)
h
= γ̂0,h + β̂′1,t,i,hγ̂1,t,h + β̂′2,t,i,hγ̂2,t,h + β̂′3,t,i,hγ̂3,t,h. (4)

The forecast errors ei,t+1,h are computed for each period and for each of the eighteen
different values of h. The time-varying RMSE is calculated at each point in time and for
each asset, while the value of h is chosen via a minimization procedure. Several different
criteria and approaches were investigated to compute this measure, including the rolling
window and non-parametric kernel-smoothed technique. The former approach refers to
the classical rolling window method with a different window w, such that w ∈ [12; 24].
Hence, the unadjusted rolling RMSE is given by

RMSEroll
t =

√√√√ 1
w

w

∑
j=1

e2
i,t+j,h, (5)

while the kernel-weighted RMSE is instead computed as

RMSEkern
t =

√√√√ T

∑
j=1

W
(

t− j
H(i)

)
e2

i,t+j,h, (6)

where H(i) = Th′ and h′ ∈ [0.05; 0.95]. Clearly, when W(H) = 1, the formula reduces to the
regular RMSEt formula in Equation (5). Both approaches generate a matrix of 18 columns
and (T − T0 − w) or (T − T0) rows, according to the method used, for each asset. Then, this
matrix of RMSEt is used to determine the optimal values of h for each asset hopt

i,t , such as
the value that produces the lowest RMSE. The approach generates a time series of optimal
values of h, that are used in the second step of this procedure to obtain a more accurate
estimation of β coefficients.
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3.2. Estimation of Factor Risk Loadings

Once the matrix with the optimal values of h is obtained, the time-varying factor
risk loading is calculated. The point of this procedure is to allow the parameters to be
fully liberalised, optimizing the choice of a time-varying bandwidth for each asset. The
forecasting performance of the new method was compared with different approaches for
the computation of β:

(i) The classical Fama and MacBeth (1973) approach, where the betas are computed
using an OLS rolling window approach with a five-year window.

(ii) A kernel-weighted approach with h = 0.5. As showed by Giraitis et al. (2014), this
bandwidth allows us to obtain smooth estimates with desirable properties such as
consistency and asymptotic normality; in addition, it provides asymptotically valid
standard errors. This model is used as a benchmark.

(iii) The alternative kernel approach, where h is fixed for each asset and time and is
determined from a poll average of the optimal bandwidth parameters hopt

i,t , as follows:

h̄Polling = (NT)−1
T

∑
t=1

N

∑
i=1

ht,i. (7)

(iv) A further kernel regression approach, with h computed by averaging the optimal
bandwidth parameters across assets. While the parameter varies over time, it is not
asset specific:

h̄Average
t = (N)−1

N

∑
i=1

ht,i. (8)

(v) A kernel approach that uses the optimal hopt
i,t , which is different for each asset to give;

this method is named Specific.
These five approaches are all implemented in the three-factor Fama and French
(1992) model:

Ri,t − R f ,t = β1,t,i,mFMRKT,t + β2,i,t,mFSMB,t + β3,i,t,mFHML,t + ui,t,m, (9)

where m ∈ [1 : 5] represents one of the aforementioned approaches used for the
computation of the factor loadings, βs. The coefficients are computed according to
Equation (2).

3.3. Estimation of Risk Premia

The time-varying estimates of beta β̂t are then used in the third step to facilitate the
computation of risk premia associated with the factors under investigations γs. Then,
the hierarchical methodology replaces the assets’ excess returns by their corresponding
time-varying kernel-weighted average

(
Rn,t − R f ,t

)
for coherence in terms of degree of

smoothness. Indeed, they are computed using the bandwidth h that was selected in the
previous step for the computation of the βs. Then, the kernel-weighted averages for the
excess returns are

̂(
Ri, − R f ,t+1

)
=

T

∑
k=1

K
(

t− k
H∗

)(
Ri,k − R f ,k

)
, (10)

where K( t−k
H∗ ) is the same continuously bounded kernel function and H∗ = Thm

, where hm

identifying the bandwidth used at the previous step for the computation of the coefficients
m ∈ [1 : 5]. These smoothed excess returns are then used for the OLS regressions, to
identify the risk premia,

̂(
Ri,t − R f ,t

)
= γ0,m + β̂1,t,i,mγ1,t,m + β̂2,t,i,mγ2,t,m + β̂3,t,i,mγ3,t,m + εi,t,m. (11)
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This results in m + 1 series of γ̂ (including the constant), for each of the five different
approaches previously considered for the estimation of the βs.

The last stage of the hierarchical approach is to select the best methodology in terms
of RMSE minimization for an out-of-sample forecasting exercise. This is achieved by
forecasting the average excess return across all assets using the average of the estimated
betas, which realizes the time series of forecasts of the average,

Rt+1 − R f ,t+1 = γ̂0,m + γ̂1,t,m
ˆ̄β1,t,m + γ̂2,t,m

ˆ̄β2,t,m + γ̂3,t,m
ˆ̄β3,t,m, (12)

where

Rt+1 − R f ,t+1 =
1
N

N

∑
i=1

(Rt+1 − R f ,t+1), (13)

and

β̄ j,t,m =
1
N

N

∑
i=1

β j,t,i,m.

Then, the RMSE are computed for each method and compared to identify the estima-
tion method, using the Diebold and Mariano (1995) test.

4. Data

The new hierarchical methodology was applied to three different financial return
datasets. The first dataset contained N = 25 portfolios sorted by size and book-to-market
ratio, while the second one contained N = 55 portfolios (25 portfolios from the first dataset
and 30 portfolios sorted by industry, both available from Ken French’s on-line data library).
A further 200 Standard and Poor’s constituents from the Center for Research in Securities
Prices (CRSP) were included, so that N = 2002. The excess returns over the 30-day Treasury
bill yield were computed with the total series covering the period from August 1973 to
January 2020, for a total of T = 514 observations (again, these are available from Kenneth
French’s on-line web site).

The following set of factors was used in the subsequent analysis: excess return on the
market, MRKT; value–weight return of all CRSP firms incorporated in the US and listed
on either the NYSE, AMEX, or the NASDAQ. The small minus big, SMB, factor and the
high minus low, HML, factor are derived in the same way as in Fama and French (1992)
and are available from Ken French’s on-line data library3.

5. Empirical Results of the Hierarchical Analysis

Following the details of the above methodological framework, Table 1 provides the
descriptive statistics for the optimal bandwidth parameters hopt for all the different datasets.
The results are categorized in terms of the methodology used to compute the time-varying
RMSEt measure; hopt

w=12 and hopt
w=24 refer to the conventional rolling window approach with

windows of 12 and 24 observations, Equation (5), while hopt
kern refers to the kernel approach

(Equation (6)). From the analysis of the panels containing the portfolio results, it can be
seen that the cross-validation procedure was remarkably consistent in choosing an h near
0.50 and a standard deviation of the estimates relatively small, lying in the range from 0.044
to 0.076 for all the methodologies. Regular t-tests were unable to reject the hypothesis that
h = 0.50 for any of the portfolio classifications. This finding is particularly interesting, since
h = 0.50 is the theoretical value identified by Giraitis et al. (2014) as being the optimal value
for h in terms of achieving an appropriate rate of convergence to an asymptotic distribution
of the TVP. However, the averages for hopt for the individual stock data were higher than
the ones for the two portfolios, being around h = 0.65. This can be interpreted as the need
to increase the degree of smoothness when using data with high levels of heterogeneity. In
addition, the analysis of across the different methods for computing the RMSEt shows that
the non-parametric kernel approach provided the highest values for the standard deviations
for each portfolio.
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Table 1. Descriptive statistics for the optimal bandwidth parameter.

Obs. Mean St. Dev. Min Max Skew Kurt
25 Portfolios

hw=12 443 0.51975 0.04937 0.37800 0.64600 −0.03670 −0.04397
hw=24 431 0.55826 0.04407 0.42600 0.68800 −0.01419 −0.32630
hKern 454 0.52804 0.07684 0.33400 0.69600 0.11501 −0.55003

55 Portfolios
hw=12 443 0.55331 0.04655 0.37273 0.68455 0.05771 0.02067
hw=24 431 0.58815 0.04586 0.47636 0.72727 −0.05941 −0.35675
hKern 454 0.55532 0.06884 0.37182 0.71909 0.23544 −0.48401

200 Stocks
hw=12 443 0.65671 0.06742 0.40100 0.76000 −1.22993 1.83550
hw=24 431 0.70924 0.05967 0.44625 0.81100 −1.31970 1.52070
hKern 454 0.65222 0.07571 0.50425 0.81475 0.14502 −0.16497

Note: The table reports the descriptive statistics of the optimal bandwidth parameters considering different
datasets (25 portfolios, 55 portfolios or 200 individual stocks) and obtained using different methods for computing
the RMSEt, as discussed in Section 3.1. The former method refers to the classical rolling window approach with
different w such that w ∈ [12; 24] (Equation (5)), while the latter involves a kernel average method (Equation (6)).

Figure 1 plots the selected optimal bandwidth parameters, averaged across assets as
in Equation (8), for each of the different methodologies for computing the time-varying
RMSEt and also for different datasets. All the methods provided an erratic mean-reverting
path, centred around 0.5, where the kernel approach confirms to be the most volatile in
all the data combination. In general, the non-parametric approach appears to be the most
volatile and is the only one that increased in the global financial crisis, GFC.

Tables 2 and 3 provide details of the estimated beta coefficients for representative assets
for each dataset. The portfolio datasets were estimated for the median portfolios, named
ME3.BM3, while, for the constituents of the SandP500, they were analysed by the Ford
index. Standard errors are given for each of the three factor loadings: MRKT, SMB and
HML. The estimated market beta β̂MRKT was close to the unity for all the portfolio datasets,
while it was around 0.7 for the Ford stock, in line with previous literature. The standard
errors provided by the Speci f ic approach were the smallest and were very important for
subsequent efficient estimation of risk premia4. Figure 2 presents the factor risk loading
estimates. Each one of the nine separate panels shows five TVP beta estimates derived from
the methodologies presented in Section 3. In particular, the rolling window is displayed
with a green line, the kernel estimate with constant bandwidth parameter of h = 0.5 in
black, the constant bandwidth parameter from poll average, Polling, in purple; further, the
time-varying h, set equal for all the asset, Average, is represented by a blue line and the
time-varying h optimised for each asset, Speci f ic, by a red line. The last three methods all
use the Gaussian kernel.

In all the scenarios, the time-varying estimates were centred around the constant ones,
highlighting the correctness of the methodology. Further, a similar path can be seen for all
the kernel estimates with the ones produced by the classical rolling window approach. In
accordance with Adrian et al. (2015), the estimates produced with the classical approach
exhibited, overall, a higher variation than the one produced with kernel approaches.
Although these estimates follow a path in line with the others, they are characterised by
numerous sudden changes along the sample period. These changes appear to be asset-
specific, hence, different asset by asset.
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Figure 1. Time-varying optimal bandwidth parameters. The figure reports the plots of the optimal
bandwidth parameters considering different datasets and methods for computing the RMSEt, as
discussed in Section 3.1. The bandwidths reported in red are computed according Equation (5)
using the classical rolling window approach with w = 12, while, for those in blue, w = 24. On the
other hand, the bandwidths in black are computed using the kernel average method discussed in
Equation (6).

Table 2. Factor risk loading estimates for Ford stocks.

Constant βs Rolling h = 0.5

βMRKT βSMB βHML βMRKT βSMB βHML βMRKT βSMB βHML

hw=12 0.7331 0.6690 0.8870 0.6008 0.7378 0.5933 0.6404 0.7413 0.1441
(0.1164) (0.1728) (0.1744) (0.2993) (0.4719) (0.4822) (0.1148) (0.2719) (0.2926)

hw=24 0.7379 0.6988 0.8895 0.6249 0.7443 0.6284 0.6435 0.7615 0.1341
(0.1164) (0.1728) (0.1744) (0.2778) (0.4361) (0.4428) (0.1199) (0.2864) (0.3057)

hKern 0.7449 0.6571 0.8763 0.5719 0.7405 0.5524 0.6460 0.7135 0.6401
(0.1164) (0.1728) (0.1744) (0.3260) (0.5146) (0.5292) (0.1129) (0.2622) (0.2848)
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Table 2. Cont.

h Pooling Average h h Specific

βMRKT βSMB βHML βMRKT βSMB βHML βMRKT βSMB βHML

hw=12 0.7267 0.7116 0.7683 0.7375 0.7060 0.7757 0.6333 0.7759 0.8200
(0.0438) (0.1041) (0.1067) (0.0466) (0.1217) (0.1176) (0.0482) (0.0896) (0.0916)

hw=24 0.7410 0.7150 0.7986 0.7804 0.6880 0.8053 0.6197 0.7704 0.8294
(0.0343) (0.0742) (0.0782) (0.0376) (0.0964) (0.0921) (0.0401) (0.0679) (0.0828)

hKern 0.7214 0.6726 0.7392 0.7105 0.6767 0.7621 0.6441 0.6066 0.7476
(0.0438) (0.1020) (0.1067) (0.0471) (0.1163) (0.1212) (0.0721) (0.1281) (0.1505)

Note: Average estimates of factor risk loadings for Ford stock using the 200 stock dataset for the computation of
the optimal bandwidth. There are 6 different methodologies: simple ordinary least square regression (Constant),
Rolling window approach (with a 5-year window) and kernel-weighted regressions using 4 different optimal
bandwidths; h = 0.5; Polling a single value of h coming from the poll average across assets and time (Equation
(7)); Average, a unique time-varying bandwidth coming from the average of h across assets (Equation (8)); Specific,
multiple time-varying bandwidths, one for each asset and time. In parenthesis, there are the averages of the
standard errors.

Table 3. Factor risk loading estimates for ME3.BM3—25 portfolios.

Panel A
Constant βs Rolling h = 0.5

βMRKT βSMB βHML βMRKT βSMB βHML βMRKT βSMB βHML

hw=12 0.9943 0.4265 0.4017 1.0034 0.5275 0.3101 1.0142 0.5363 0.3035
(0.0175) (0.0259) (0.0262) (0.0413) (0.0619) (0.0651) (0.0119) (0.0282) (0.0303)

hw=24 0.9935 0.4211 0.4059 1.0022 0.5230 0.3165 1.0138 0.5342 0.2962
(0.0175) (0.0259) (0.0262) (0.0384) (0.0571) (0.0596) (0.0122) (0.0291) (0.0311)

hKern 0.9969 0.4282 0.4029 1.0052 0.5296 0.3036 1.0135 0.5304 0.3024
(0.0175) (0.0259) (0.0262) (0.0453) (0.0681) (0.0721) (0.0120) (0.0279) (0.0303)

h pooling Average h h specific

βMRKT βSMB βHML βMRKT βSMB βHML βMRKT βSMB βHML

hw=12 1.0132 0.5322 0.3072 1.0114 0.5281 0.3085 1.0123 0.4670 0.3830
(0.0104) (0.0249) (0.0265) (0.0109) (0.0267) (0.0289) (0.0048) (0.0103) (0.0158)

hw=24 1.0099 0.5204 0.3101 1.0080 0.5200 0.3101 1.0041 0.4684 0.3792
(0.0083) (0.0203) (0.0208) (0.0086) (0.0217) (0.0221) (0.0053) (0.0080) (0.0167)

hKern 1.0116 0.5241 0.3074 1.0089 0.5199 0.3067 1.0126 0.4461 0.4163
(0.0099) (0.0233) (0.0250) (0.0115) (0.0268) (0.0304) (0.0067) (0.0165) (0.0176)

Panel B
Constant βs Rolling h = 0.5

βMRKT βSMB βHML βMRKT βSMB βHML βMRKT βSMB βHML

hw=12 0.9943 0.4265 0.4017 1.0034 0.5275 0.3101 1.0142 0.5363 0.3035
(0.0175) (0.0259) (0.0262) (0.0413) (0.0619) (0.0651) (0.0119) (0.0282) (0.0303)

hw=24 0.9935 0.4211 0.4059 1.0022 0.5230 0.3165 1.0138 0.5342 0.2962
(0.0175) (0.0259) (0.0262) (0.0384) (0.0571) (0.0596) (0.0122) (0.0291) (0.0311)

hKern 0.9969 0.4282 0.4029 1.0052 0.5296 0.3036 1.0135 0.5304 0.3024
(0.0175) (0.0259) (0.0262) (0.0453) (0.0681) (0.0721) (0.0120) (0.0279) (0.0303)

h pooling Average h h specific

βMRKT βSMB βHML βMRKT βSMB βHML βMRKT βSMB βHML

hw=12 1.0105 0.5234 0.3145 1.0093 0.5192 0.3221 1.0078 0.4694 0.3856
(0.0084) (0.0203) (0.0212) (0.0088) (0.0214) (0.0231) (0.0078) (0.0132) (0.0204)

hw=24 1.0068 0.5104 0.3203 1.0051 0.5069 0.3277 1.0071 0.4741 0.3925
(0.0069) (0.0169) (0.0171) (0.0072) (0.0179) (0.0190) (0.0071) (0.0125) (0.0219)

hKern 1.0091 0.5164 0.3133 1.0071 0.5105 0.3203 1.0058 0.4703 0.3864
(0.0083) (0.0197) (0.0209) (0.0095) (0.0217) (0.0242) (0.0107) (0.0200) (0.0237)

Note: Average estimates of factor risk loadings for the portfolio ME3.BM3 using 25 (Panel) and 55 Portfolios for the
computation of the optimal bandwidth, respectively, in Panel A and Panel B. There are 6 different methodologies:
simple ordinary least square regression (Constant), Rolling window approach (with a 5-year window) and kernel-
weighted regressions using 4 different optimal bandwidths; h = 0.5; Polling a single value of h coming from the
poll average across assets and time (Equation (7)); Average, a unique time-varying bandwidth coming from the
average of h across assets (Equation (8)); Specific, multiple time-varying bandwidths, one for each asset and time.
In parenthesis, there are the averages of the standard errors.
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Figure 2. A dynamic comparison of the factor loading estimates. Note: The figure provides the
estimates of factor risk loadings computed using the normal approach Constant β (grey line), Rolling
window, with a 5-year estimation period (green line) and kernel-weighted regressions using 4
different optimal bandwidths; h = 0.5 (black line); Polling a single value of h coming from the poll
average across assets and time, as shown in Equation (7), (purple line); Average, a unique time-varying
bandwidth coming from the average of h across assets (Equation (8)), (blue line); Specific, multiple
time-varying bandwidths, one for each asset and time (red line). The choice of the optimal bandwidth
parameter hopt

t was made using the kernel approach, as discussed in Equation (6).

As expected, the beta estimates for portfolio datasets exhibited a lower degree of
variation than those that employed stock indexes. This is presumably due to noise using
stock data and the loss of information induced by grouping stocks to build a portfolio (Lo
and MacKinlay (1990)). In general, the betas on the MKT and HML factors were the ones
that most often switch sign, while the SMB appears to be the most stable factor. Table 4
provides the estimates and the respective standard errors of the risk premium parameters
γi, with i ∈ [0, 3], also including the constant term. The Newey West standard errors are
also displayed in the last column. Further, it presents results for hopt, computed using
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RMSEt with the kernel-averaging approach. The results for the other two parametric
approaches are available online.

The average prices of risk appear to be very similar across the different methods
and within each dataset. The Speci f ic method shows the smallest standard errors despite
the sample considered. The sample size appears to matter and affects the significance
of the price of all the factors. In particular, SMB was priced only considering individual
stocks. This result is consistent with other studies showing that SMB is not priced in the
cross-section of portfolios sorted by size and book to market (see Adrian et al. (2015) and
Lettau and Ludvigson (2001a)).

Table 4. Descriptive statistics of risk premium estimates.

Obs. Mean St. Dev. Min Max Skew Kurt SE NW SE

25 Portfolio
Rolling

γ̂0 454 0.0086 0.0083 −0.0123 0.0371 0.4184 0.5990 0.0060 0.0054
γ̂βMRKT 454 −0.0022 0.0088 −0.0226 0.0233 0.0766 −0.5119 0.0057 0.0050
γ̂βSMB 454 0.0021 0.0054 −0.0085 0.0145 0.4392 −0.7676 0.0010 0.0011
γ̂βHML 454 0.0032 0.0042 −0.0058 0.0168 0.2544 −0.2611 0.0011 0.0010

h = 0.5
γ̂0 454 0.0092 0.0082 −0.0067 0.0344 0.9116 1.3169 0.0059 0.0048

γ̂βMRKT 454 −0.0024 0.0086 −0.0216 0.0129 −0.2629 −0.8884 0.0057 0.0046
γ̂βSMB 454 0.0010 0.0042 −0.0045 0.0099 0.5480 −0.7747 0.0010 0.0009
γ̂βHML 454 0.0028 0.0036 −0.0027 0.0099 0.2900 −1.0656 0.0011 0.0008

Polling
γ̂0 454 0.0096 0.0074 −0.0044 0.0316 0.9550 1.0650 0.0059 0.0047

γ̂βMRKT 454 −0.0028 0.0079 −0.0202 0.0103 −0.3081 −0.9680 0.0056 0.0045
γ̂βSMB 454 0.0010 0.0037 −0.0043 0.0087 0.5381 −0.8492 0.0010 0.0009
γ̂βHML 454 0.0028 0.0032 −0.0021 0.0086 0.1337 −1.1173 0.0011 0.0008

Average
γ̂0 454 0.0098 0.0069 −0.0048 0.0350 0.8941 1.6039 0.0058 0.0046

γ̂βMRKT 454 −0.0025 0.0073 −0.0216 0.0150 −0.1567 −0.6690 0.0056 0.0044
γ̂βSMB 454 0.0007 0.0037 −0.0113 0.0118 0.4682 0.2256 0.0009 0.0008
γ̂βHML 454 0.0031 0.0032 −0.0069 0.0132 0.1595 −0.2499 0.0010 0.0008

Specific
γ̂0 454 0.0064 0.0281 −0.1892 0.1286 −0.2239 5.9720 0.0161 0.0151

γ̂βMRKT 454 0.0005 0.0275 −0.1089 0.1753 0.1478 4.6923 0.0155 0.0147
γ̂βSMB 454 0.0010 0.0061 −0.0158 0.0267 0.4351 1.6323 0.0036 0.0029
γ̂βHML 454 0.0030 0.0086 −0.0284 0.0407 0.0598 2.1849 0.0039 0.0036

55 Portfolio
Rolling

γ̂0 454 0.0029 0.0060 −0.0083 0.0206 0.8131 0.4169 0.0032 0.0034
γ̂βMRKT 454 0.0037 0.0074 −0.0137 0.0214 0.2648 −0.6650 0.0031 0.0034
γ̂βSMB 454 0.0019 0.0058 −0.0102 0.0146 0.3154 −0.8416 0.0011 0.0011
γ̂βHML 454 0.0012 0.0052 −0.0127 0.0163 0.0905 0.1267 0.0012 0.0014

h = 0.5
γ̂0 454 0.0031 0.0060 −0.0080 0.0185 0.5166 −0.1746 0.0032 0.0031

γ̂βMRKT 454 0.0039 0.0068 −0.0088 0.0177 0.3021 −0.7173 0.0031 0.0031
γ̂βSMB 454 0.0007 0.0047 −0.0055 0.0106 0.4547 −0.8907 0.0011 0.0011
γ̂βHML 454 0.0004 0.0052 −0.0097 0.0091 0.0824 −0.8843 0.0012 0.0015

Polling
γ̂0 454 0.0038 0.0052 −0.0049 0.0156 0.4892 −0.5169 0.0031 0.0029

γ̂βMRKT 454 0.0032 0.0057 −0.0075 0.0142 0.2503 −0.8742 0.0030 0.0030
γ̂βSMB 454 0.0006 0.0038 −0.0049 0.0083 0.4662 −0.9538 0.0011 0.0011
γ̂βHML 454 0.0007 0.0043 −0.0090 0.0076 −0.2592 −0.3218 0.0012 0.0014

Average
γ̂0 454 0.0043 0.0051 −0.0074 0.0179 0.2525 −0.4356 0.0030 0.0030

γ̂βMRKT 454 0.0030 0.0057 −0.0107 0.0171 0.3331 −0.4746 0.0029 0.0030
γ̂βSMB 454 0.0004 0.0039 −0.0076 0.0097 0.2985 −0.7415 0.0010 0.0010
γ̂βHML 454 0.0010 0.0044 −0.0098 0.0106 −0.2347 −0.2759 0.0012 0.0013

Specific
γ̂0 454 0.0053 0.0109 −0.0385 0.0406 −0.0563 1.4520 0.0062 0.0063

γ̂βMRKT 454 0.0020 0.0125 −0.0380 0.0517 −0.0727 1.9992 0.0061 0.0065
γ̂βSMB 454 0.0002 0.0066 −0.0220 0.0306 0.6872 1.7246 0.0026 0.0028
γ̂βHML 454 0.0007 0.0076 −0.0228 0.0252 −0.0234 −0.0214 0.0028 0.0032
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Table 4. Cont.

Obs. Mean St. Dev. Min Max Skew Kurt SE NW SE

200 Stocks
Rolling

γ̂0 454 0.0013 0.0049 −0.0121 0.0110 −0.8412 0.5448 0.0011 0.0013
γ̂βMRKT 454 0.0069 0.0095 −0.0198 0.0260 −0.6055 −0.3970 0.0024 0.0032
γ̂βSMB 454 0.0018 0.0062 −0.0125 0.0223 0.9650 0.6839 0.0013 0.0016
γ̂βHML 454 −0.0003 0.0062 −0.0164 0.0181 0.2282 −0.3997 0.0015 0.0017

h = 0.5
γ̂0 454 0.0023 0.0049 −0.0097 0.0114 −0.6056 0.5540 0.0011 0.0011

γ̂βMRKT 454 0.0071 0.0101 −0.0117 0.0226 −0.4628 −1.2147 0.0024 0.0031
γ̂βSMB 454 0.0011 0.0045 −0.0056 0.0125 0.7757 0.0968 0.0013 0.0014
γ̂βHML 454 −0.0018 0.0062 −0.0140 0.0106 0.2524 −0.8254 0.0015 0.0017

Polling
γ̂0 454 0.0026 0.0034 −0.0049 0.0085 −0.4529 −0.4068 0.0008 0.0008

γ̂βMRKT 454 0.0068 0.0100 −0.0091 0.0179 −0.2393 −1.6461 0.0022 0.0025
γ̂βSMB 454 0.0024 0.0021 −0.0013 0.0083 0.4873 −0.0664 0.0011 0.0011
γ̂βHML 454 −0.0030 0.0023 −0.0062 0.0007 0.2737 −1.3960 0.0013 0.0015

Average
γ̂0 454 0.0027 0.0034 −0.0070 0.0114 −0.2455 0.1043 0.0008 0.0008

γ̂βMRKT 454 0.0065 0.0098 −0.0111 0.0182 −0.2348 −1.5546 0.0022 0.0025
γ̂βSMB 454 0.0023 0.0023 −0.0042 0.0107 0.3858 1.0965 0.0011 0.0011
γ̂βHML 454 −0.0028 0.0028 −0.0086 0.0082 1.0775 1.4751 0.0013 0.0015

Specific
γ̂0 454. 0.0021 0.0049 −0.0145 0.0187 0.2124 0.1013 0.0001 0.0015

γ̂βMRKT 454 0.0066 0.0157 −0.0493 0.0464 −0.5967 1.1184 0.0003 0.0042
γ̂βSMB 454 0.0009 0.0080 −0.0240 0.0234 −0.2290 −0.0516 0.0001 0.0022
γ̂βHML 454 −0.0004 0.0093 −0.0319 0.0304 −0.0736 0.2182 0.0002 0.0025

Note: Descriptive statistics of the estimated risk premia, computed for the classical FMcB approach and 4 different
bandwidth specifications: h = 0.5; Polling a single value of h coming from the poll average across assets and time
(as shown in Equation (7)); Average, a unique time-varying bandwidth coming from the average of h across assets
(Equation (8)); Specific, multiple time-varying bandwidths, one for each asset and time. The Newey West standard
errors are also displayed in the last column. The choice of the optimal bandwidth parameter hopt

t was made using
the kernel approach for the computation of the time-varying RMSE, as discussed in Equation (6).

Despite most of the factors were not statistically different from zero on average—hence
not priced—they exhibited a statistically significant time variation and fluctuated a lot
between positive and negative values. Further, the significance of the constant term (γ0),
mostly throughout the entire sample, is in line with the literature, suggesting that the
factors considered by Fama and French (1992) only partially describe the excess returns5.
This time variation of the price of risk is well documented by the set of Figures 3–6. Figure 3
plots, by columns, the γs for the three different samples, with the top panel relating to the
25 portfolios, the central panel to the 55 portfolios and the bottom panel individual stocks.
As before, the value of h = 0.5 and the Polling methods described a form of background
path for the evolution of the price of risk, while the Speci f ic approach exhibited the highest
volatility. From the analysis of these graphs, it is clear how much of the information about
the price of risk was lost using approaches such h = 0.50, where we did not consider the
specificity of each asset.
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Figure 3. Dynamic comparison of risk premium estimates for different approaches. Note: The figure
provides the estimates of risk premium estimates computed using factor risk loadings calculated with
Rolling window, with a 5-year estimation period (FMcB approach, green line) and kernel-weighted
regressions using 4 different optimal bandwidths; h = 0.5 (black line); Polling a single value of h
coming from the poll average across assets and time, as shown in Equation (7)) (purple line); Average,
a unique time-varying bandwidth coming from the average of h across assets (Equation (8); blue line);
Specific, multiple time-varying bandwidths, one for each asset and time (red line). The choice of the
optimal bandwidth parameter hopt

t was made using the kernel approach for the computation of the
time-varying RMSE, as discussed in Equation (6).

In particular, only the Speci f ic approach seems able to capture the GFC, where the
drop in the estimates of the price of the factors is clearly evident. In Figures 4–6, instead, we
reproduce an analysis of the significance for the different estimates across time—Figure 4
contains the results for 25 portfolios and Figure 5 for 55 portfolios, while Figure 6 the
ones for individual stocks. All the Figures are structured as follows: in the columns, the
different γs are reported, while, in each row, there is a different method for the computation
of β, as in Section 2. For what concerns the market risk premia, they show a significant
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positive sign at the beginning of the sample until early 2000, when it becomes significantly
negative. Such change was captured by all the methods, despite it being clearer for the
stock asset context.
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Figure 4. Comparison of γs significance of different approaches—25 portfolios. Note: The figure
provides a significance analysis of the estimates of risk premium estimates. The blue areas are periods
in which the estimates are statistically positive at a 5% level of significance, while the red ones identify
periods in which the estimates are negative. The series were computed using different approaches:
Rolling window (FMcB approach), h = 0.5; Polling a single value of h coming from the poll average
across assets and time (Equation (7)); Average, a unique time-varying bandwidth coming from the
average of h across assets (Equation (8)); Specific, multiple time-varying bandwidths, one for each
asset and time. The choice of the optimal bandwidth parameter hopt

t has been made using the kernel
approach as discussed in Equation (6).
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Figure 5. Comparison of γs significance of different approaches—55 portfolios. Note: The figure
provides a significance analysis of the estimates of risk premium estimates. The blue areas are periods
in which the estimates are statistically positive at a 5% level of significance, while the red ones identify
periods in which the estimates are negative. The series were computed using different approaches:
Rolling window (FMcB approach), h = 0.5; Polling a single value of h coming from the poll average
across assets and time (Equation (7)); Average, a unique time-varying bandwidth coming from the
average of h across assets (Equation (8)); Specific, multiple time-varying bandwidths, one for each
asset and time. The choice of the optimal bandwidth parameter hopt

t was made using the kernel
approach, as discussed in Equation (6).
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Figure 6. Comparison of γs significance of different approaches—200 stocks. Note: The figure
provides a significance analysis of the estimates of risk premium estimates. The blue areas are periods
in which the estimates are statistically positive at a 5% level of significance, while the red ones identify
periods in which the estimates are negative. The series were computed using different approaches:
Rolling window (FMcB approach), h = 0.5; Polling a single value of h coming from the poll average
across assets and time (Equation (7)); Average, a unique time-varying bandwidth coming from the
average of h across assets (Equation (8)); Specific, multiple time-varying bandwidths, one for each
asset and time. The choice of the optimal bandwidth parameter hopt

t has been made using the kernel
approach as discussed in Equation (6).

An important aspect of the hierarchical method is the improvement in the forecasting
precision. Table 5 displays the RMSE of an out-of-sample forecast exercise, reported as
deviation from the RMSE produced by the benchmark Fama and MacBeth (1973) approach
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(Rolling). The analysis of the tables identifies the Speci f ic approach as the best method,
since it produced a remarkable reduction in the loss function, hence more precise forecast.
The overall gains were greater for the portfolios of sizes 25 and 55. This approach produced
improvements of around 6% with respect to the basic Fama and MacBeth (1973) and of
4.5% with respect to the kernel approach with optimal bandwidth parameter set to 0.5.
Further, since the Speci f ic approach also outperformed the other two kernel methods,
Polling and Average, the importance of the time variation in the bandwidth parameters
h and its optimisation for each asset is clear. Further, in line with Adrian et al. (2015), we
observed that the classical rolling window approach was always outperformed by the
kernel ones.

Table 5. Percentage reduction of RMSE in respect to the benchmark model.

Bandwidth Choice: RMSE

hw=12 hw=24 hKern

25 Portfolios
h = 0.5 −0.522 −0.483 −2.302
Polled −0.396 −0.168 −2.140

Average −0.424 −0.444 −2.048
Specific −5.800 −5.383 −6.738

55 Portfolios
h = 0.5 −0.528 −0.529 −2.235
Polled −0.219 −0.196 −1.943

Average −0.147 0.019 −1.871
Specific −5.349 −4.444 −6.339

200 Stocks
h = 0.5 −0.535 −0.664 −1.902
Polled 0.033 −0.014 −1.382

Average 0.102 −0.107 −1.413
Specific −2.393 −2.119 −3.310

Note: The table provides the RMSE for the out-of-sample one-step ahead forecasting exercise as a percentage
deviation from the benchmark model of Fama and MacBeth—Rolling. The competing models are the following:
h = 0.5; Polling, a single value of h coming from the poll average across assets and time (Equation (7)); Average,
a unique time-varying bandwidth coming from the average of h across assets (Equation (8)); Specific, multiple
time-varying bandwidths, one for each asset and time.

Finally, increasing the sample size did not help to reduce the RMSE; the smallest
values were reached performing the analysis for the 55-portfolio sample, while the largest
ones for the constituents of SandP500.

Table 6 presents a pairwise analysis using the Diebold and Mariano (1995) test, hence-
forth DM, performed to certify the significance of the superior forecasting performance
of the Gaussian kernel approach with a time-varying bandwidth. The p-values of the
DM test were calculated under the null hypothesis that two competing models had the
same predictive accuracy, while the alternative was that the two methods had significantly
different levels of accuracy. The analysis was conducted for all the samples and methods.
The results are very striking and indicate that the DM test for the Specific method were
statistically significant at the 0.01 level, confirming the aforementioned results.

The key role of the time variation in the bandwidth parameter is also emphasized
by the results of the method labelled Average with respect to the h = 0.5 and Polling
approaches. Here, the null hypothesis of no difference in terms of performance could
not be rejected. In line with the literature, the Fama and MacBeth (1973) five-year rolling
window approach was never preferred to the kernel regression method with h = 0.5,
Polling, or Average. Instead, ambiguous results were produced for the relations between
h = 0.5 and Polling, where the former was preferred only in those cases where Polling
had hs lower than 0.5, such as the 25 portfolios, with RMSEw=12. Such evidence was not
unexpected given the nature and the characteristics of the Polling approach. Indeed, as
Table 1 shows, by increasing the sample size, the degree of smoothness increased, producing
flatter estimates that performed well in a forecasting exercise.

Some further results on model comparisons and explanation of results are presented in
Table 7; it displays the correlations between the beta estimates generated by each different
asset. The Speci f ic approach is the method that produced less correlated estimates; the
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difference with respect the other methods is between 60% and 70%. This finding is robust
in terms of changing sample and methods relatively to the choice of the bandwidth. Such
results, together with the fact that the Speci f ic approach provided small standard errors,
let us solve two of the main critiques of the Fama and MacBeth (1973) method (error in
variable problem and cross-sectional correlation), remaining agnostic on the choice of data
between portfolios and individual stocks (see Shanken (1992) and Adrian and Franzoni
(2005), among the others).

Table 6. Diebold and Mariano test results.

25 Portfolios 55 Portfolios 200 Stocks

Rolling h = 0.5 Polling Average Rolling h = 0.5 Polling Average Rolling h = 0.5 Polling Average

hw=12
h = 0.5 0.0179 0.0144 0.0193
Polling 0.2688 0.0407 0.4797 0.0426 0.9222 0.1062
Average 0.2401 0.4732 0.8207 0.6468 0.0767 0.4621 0.7755 0.0235 0.8493
Specific 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0018 0.0061 0.0043 0.0005

hw=24
h = 0.5 0.0202 0.0134 0.0113
Polling 0.5511 0.0569 0.3998 0.0542 0.9527 0.1051
Average 0.1953 0.7605 0.0466 0.9368 0.0392 0.1147 0.7303 0.0183 0.7439
Specific 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0019 0.0044 0.0025 0.0007

hKern
h = 0.5 0.0000 0.0001 0.0007
Polling 0.0001 0.0521 0.0001 0.0542 0.0088 0.1181
Average 0.0001 0.2588 0.5973 0.0004 0.1260 0.5895 0.0098 0.1721 0.5460
Specific 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Note: The table provides the p-values of the DM test applied to the results of Section 5. The null hypothesis is
that the two competing forecasting models have the same predictive accuracy, while the alternative is that the two
methods have a significantly different level of accuracy for the out-of-sample one-step ahead forecasting exercise.

Table 7. Correlation matrix among factor risk loadings.

25 Portfolios 55 Portfolios 200 Stocks

hw=12 hw=24 hKern hw=12 hw=24 hKern hw=12 hw=24 hKern

βMRKT
Rolling 0.2969 0.3216 0.2747 0.3118 0.3359 0.2888 0.3074 0.3183 0.2936
h = 0.5 0.3159 0.3185 0.3141 0.3334 0.3381 0.3317 0.3293 0.3335 0.3301

Pooling 0.3284 0.3608 0.3303 0.3785 0.4235 0.3782 0.5030 0.5966 0.4945
Average 0.3106 0.3389 0.2894 0.3663 0.4114 0.3491 0.4525 0.5235 0.4451
Specific 0.0887 0.0937 0.0892 0.0985 0.1108 0.0967 0.1026 0.1220 0.0755
βSMB
Rolling 0.3155 0.3379 0.2995 0.2984 0.3204 0.2797 0.4223 0.4314 0.4187
h = 0.5 0.3335 0.3356 0.3267 0.3266 0.3257 0.3293 0.5252 0.5368 0.4829

Pooling 0.3491 0.3864 0.3471 0.3721 0.4076 0.3740 0.6785 0.7183 0.6254
Average 0.3406 0.3774 0.3165 0.3549 0.3838 0.3403 0.6179 0.6618 0.5942
Specific 0.0940 0.0930 0.0884 0.0967 0.0978 0.0900 0.1546 0.1895 0.1151
βHML
Rolling 0.4920 0.5310 0.4525 0.4417 0.4831 0.4007 0.3418 0.3729 0.3160
h = 0.5 0.5263 0.5310 0.5214 0.4689 0.4744 0.4643 0.3625 0.3624 0.3575

Pooling 0.5467 0.5808 0.5488 0.5219 0.5650 0.4744 0.5373 0.6080 0.5309
Average 0.5082 0.5576 0.4826 0.4917 0.5335 0.4702 0.4952 0.5339 0.4774
Specific 0.1150 0.1135 0.1065 0.1094 0.1167 0.0998 0.1024 0.1271 0.0838

Note: The table provides the average correlation among the 3 factor loadings for all the approaches under
analysis: Rolling window, with 5-year estimation period and kernel-weighted regressions using 4 different
optimal bandwidths; h = 0.5; Polling a single value of h coming from the poll average across assets and time
(Equation (7)); Average, a unique time-varying bandwidth coming from the average of h across assets (Equation (8));
Specific, multiple time-varying bandwidths, one for each asset and time, hopt.

These findings extend the results obtained by Adrian et al. (2015) and are consistent
with those obtained by Ferson and Harvey (1991), highlighting the importance of using
not only a dynamic framework but also a dynamic estimation approach with minimal
theoretical restriction.
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5.1. Robustness Checks

A substantial number of robustness checks were performed to test the aforementioned
findings. Full details are available in Appendix C, where we report the RMSE for each
approach in terms of deviation from the benchmark FMcB.

Firstly, we investigated the sensitivity of the results to the choice of bandwidth parame-
ter range, originally set as [0.05; 0.95]. Three alternative intervals were analysed: [0.35; 0.95],
[0.05; 0.6] and [0.25; 0.75]. The results, reported in Table A1, confirm that the Speci f ic ap-
proach led to a reduction in RMSE that oscillated between 0.6% and 8.2% for the 25- and
55-portfolio samples and between 0.5% and 6.4% for the constituents of SandP500.

Further, the awareness of possible overfitting issues due to the combination of sample
size of the training period and the small value for the bandwidth parameters led us to
also investigate the specification of the bandwidth parameter using a time-varying LASSO
approach inside the hierarchical methodology. After an accurate analysis for the choice of
the penalization parameter, we decided to use values of λ that allowed us to maintain the
model unchanged6 (λ ∈ [0.00005; 0.000001]). The results, displayed in Table A3, show that,
by increasing the penalisation, we significantly increased the gain of the Speci f ic technique,
which resulted to be between 2.8% and 10.2%.

To avoid the possible presence of overfitting concerns, Table A4 shows how changes
in the size of training period affect the results. We investigated the results using ten
years of data, T = 120 observations, and fifteen years of data, T = 180 observations.
Table A4 confirms that the Specific outperformed the benchmark model and was the one
with the highest reduction in RMSE. In Table A2, the analysis relatively to changing the
sample period in order to exclude the global financial crisis is reported. The new sample
tested was 1973–2007. The results confirm again that the Specific approach outperformed
its competitors.

Finally, since the goal of this paper is to propose a new estimation method to increase
the forecasting performances of any asset pricing model, here, we consider different model
specifications, namely, the momentum factor by Carhart (1997) and the five-factor model
by Fama and French (2015).

6. Concluding Remarks

In this paper, we developed a new framework for the estimation of beta coefficients
for a generic dynamic asset pricing model that imposes little a priori structure and gen-
eralizes the classic two-step Fama and MacBeth (1973) procedure. The time variation in
the beta estimates is found from a kernel-weighted regression that significantly improves
on conventional results in terms of RMSE. The cross-validation procedure allows us to
optimise the choice of the time bandwidth parameter for each asset at each point in time.
This very flexible approach, without imposing an extensive a priori structure, improves the
estimation of the risk premia. The empirical results overwhelmingly show that the time
variation of risk associated with stocks and portfolios must be captured with an estimation
procedure that, on one hand, avoids imposing an excessive a priori structure and, on the
other hand, takes into account the specific features of each asset and the time variation of its
generating mechanism. The methodology is able to produce an increase in the forecasting
performance greater (between 4% and 7%) than the alternative methods and independently
for any type of model and asset.

Despite the empirical nature of this work, further development and application of
this methodology is possible. Especially from a modelling point of view, further studies
could focus on re-assessing the existing financial factors in a time-varying context both in
the American and European markets. For instance, accounting for the time component of
the different factors might reveal the importance of financial ratios in revealing corporate
financial soundness and helping the competitive position of an enterprise Valášková (2020).
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Appendix A. Formulation Details

In Fama and MacBeth (1973) seminal paper, they consider N assets and m factors;
firstly, the factor exposures, or betas, are computed from the following time-series regression
produced for all the N assets:

Ri,t − R f ,t = αi + β1,iF1,t + β2,iF2,t + · · ·+ βm,iFm,t + ui,t,

where i ∈ [1 : N]; t ∈ [1 : T]; Ri,t is defined as the nominal return on the ith asset between
period t and t− 1; R f ,t denotes the risk-free rate. Then, Fj,t, where j ∈ [1 : m], is a potential
explanatory factor, while β j,i represents the factor loading, that describes the degree of
exposure of each asset to the factor, and ui,t is assumed to be iid(0, σ2

u).
The second step of the Fama and MacBeth (1973) method is to compute T cross-

sectional regressions of the excess return of the assets on the m estimated betas, β̂, computed
in the previous step. All these regressions use the same β̂, since the objective of the Fama
and MacBeth (1973) approach is to estimate the exposure of the N returns to the m factors
loadings over time. Hence,(

Ri,t − R f ,t

)
= γ0,t + γ1,t β̂1,i + γ2,t β̂2,i + · · ·+ γm,t β̂m,i + εi,t,

where γjs measure the risk premia associated with each Fj. Hence, the method determines
m + 1 series of the γs, which are also generally considered to be constant. If the model is
well specified and all the factors considered are significant, then the risk loadings explain the
cross-sectional differences, ˆ̄γ0 = 0, and ˆ̄γj represent the average risk premia for each factor.

Appendix B. Kernel-Weighted Regression

In order to account for the time variation in the coefficients in our models, we
implement a non-parametric kernel approach that has the main advantage of requir-
ing minimal theoretical restriction on the functional form. Specifically, we extend the
work by Giraitis et al. (2014) on autoregressive processes to a kernel smoothing regression.
Giraitis et al. (2014) consider the AR(1) process

yt = φt−1yt−1 + ut, (A1)

where ut is iid (0, σ2
u) and there is some initialization of the process y0, whereas φt−1 is a

random coefficient, ut|Ωt−1 = 0 and φt|Ωt−1 = φt. The stability of the model depends on
the TVP nature of the AR parameters satisfying various smoothness conditions. Giraitis,
Kapetanios and Yates (2014) model the TVP parameter, denoted by φt, for an AR(1) as a
rescaled random walk, where {at} is a non-stationary process which defines the random
drift and −1 < φ < 1. In this context, φt is a standardized version of at, so that

φt = φ
at

max0≤k≤t|ak|
, . . . , t > 0, (A2)

where the stochastic process at is assumed to be a drift-less random walk, so that at =
at−1 + wt, and where wt is a stationary process with zero mean. In addition, φ ∈ (0, 1) and
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φt−1 is bounded away from the boundary points of −1 and 1. The above framework can be
extended to the time-varying AR(p) model

yt =
p

∑
i=1

φt−1,iyt−i + ut

and can be used with the boundary conditions

φt,i = φ
at,i

max0≤k≤t
∣∣ak,i

∣∣ , . . . , t > 1, (A3)

where 0 < φ < 1 and each at,i in an independent version of the at process defined above.
Under these assumptions, the maximum absolute eigenvalues of the matrix

At =



φt,1 φt,2 . . . . . . . . . φt,p
1 0 . . . . . . . . . 0
0 1 0 . . . . . . 0

. . . 0 1 0 . . . 0

. . . . . . . . . . . . . . . 0
0 . . . . . . 0 1 0


are bounded above by unity for all t. Giraitis et al. (2014) show that the coefficient process
{φt; t = 1, . . . , T} converges in distribution as T increases to the limit

{φt; 0 ≤ τ ≤ 1} →D {φW̃τ ; 0 ≤ τ ≤ 1},

where W̃(.) is the standard Brownian motion. The approach for estimating the time-varying
parameter, φt is to use the moving window estimator for the AR(1) RC model

φ̂t =
∑H

t=1 K
(

t−k
H

)
ytyt−1

∑H
t=1 K

(
t−k
H

)
y2

t−1

, (A4)

where K
(

t−k
H

)
is a kernel and continuously bounded function, such as the Epanechnikov

kernel with finite support, or the familiar Gaussian kernel with infinite support. Generalis-
ing this estimation method, a regression can be expressed as

yt = x′tβt + ut, (A5)

where βt = (β1,t, β2,t, . . . βk,t); it is assumed that each β j,t follows a bounded random
walk. x′t is the matrix (m × T) containing the time series of the factors. Therefore, the
kernel-weighted regression estimator for β j,t is

β̂ j,t =

(
T

∑
j=1

wjtxjx′j

)−1( T

∑
j=1

wjtxjyj

)
, (A6)

where wjt = K
(

t−k
H

)
. The authors prove that, if the bandwidth is op

(
Th
)

with h = 1/2
and given homoskedasticity of the error process, then

Var
(

β̂t
)
= σ̂2

u

(
T

∑
j=1

wjtxjx′j

)−1 T

∑
j=1

w2
jtxjx′j

(
T

∑
j=1

wjtxjx′j

)−1

, (A7)
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where σ̂2
u = 1

T ∑T
i=1(yt − x′tβt)

2. While, if ut is heteroscedastic, then the covariance matrix
of the TVP parameter estimates is given by

Var
(

β̂ j,t
)
=

(
T

∑
j=1

wjtxjx′j

)−1( T

∑
j=1

w2
jtxjx′jû

2
t

)(
T

∑
j=1

wjtxjx′j

)−1

, (A8)

which can be used for inference. One appealing characteristic of this approach is that it nests
rolling window estimates of the regression betas and is equivalent to kernel-smoothing
estimators using a uniform one-sided kernel instead of a Gaussian two-sided kernel. A
key role is played by the decision about the selection of the bandwidth; for a given kernel
function K

(
t−k
H

)
, the bandwidth H represents the degree of smoothness of the estimates.

Giraitis et al. (2014) proved that a bandwidth of H = Th, with h = 0.5, provides an estimator
with desirable properties such as consistency and asymptotic normality and, in addition,
provides valid standard errors.

Another appealing characteristic of such approach is that it nests, as a special case,
rolling window estimates of betas (see, for example, Chen et al. 1986; Ferson and Harvey 1991
and Petkova and Zhang 2005, among many others). Rolling beta estimates are equivalent
to kernel-smoothing estimators obtained using a uniform one-sided kernel instead of a
Gaussian two-sided kernel and it has been proved that the order of the smoothing bias of
the estimator for the betas and the price of risk parameters is larger for one-sided kernels.

In the kernel estimation approach, a key role is played by the selection of the band-
width. For a given kernel function K

(
t−k
H

)
, the bandwidth H represents and controls

the degree of smoothness of the estimates. In other terms, if the bandwidth is small, the
estimates are under-smoothed, with high variability, otherwise, if the value of H is big,
the resulting estimators are over-smoothed and further from the real function. Different
approaches have been proposed to handle the choice of the bandwidth. Ang and Kristensen
(2012) suggest to optimise the choice of the bandwidth for conditional and long estimates in
order to reduce any finite-sample biases and variances. Giraitis et al. (2014), instead, proved
that, if the bandwidth is H = Th, with h = 0.5, the estimator has desirable properties such
as consistency and asymptotic normality and, in addition, provides valid standard errors.

Appendix C. Robustness Checks

Table A1. Percentage reduction in RMSEs for different bandwidth parameter intervals.

25 Portfolios 55 Portfolios 200 Stocks

hw=12 hw=24 hKern hw=12 hw=24 hKern hw=12 hw=24 hKern

h ∈ [0.05; 0.95]
h = 0.5 −0.522 −0.483 −2.302 −0.528 −0.529 −2.235 −0.535 −0.664 −1.902
Polling −0.396 −0.168 −2.140 −0.219 −0.196 −1.943 0.033 −0.014 −1.382
Average −0.424 −0.444 −2.048 −0.147 0.019 −1.871 0.102 −0.107 −1.413
Specific −5.800 −5.383 −6.738 −5.349 −4.444 −6.339 −2.393 −2.119 −3.310

h ∈ [0.05; 0.6]
h = 0.5 −0.522 −0.483 −2.302 −0.528 −0.529 −2.235 −0.412 −0.413 −1.743
Polling −2.086 −1.640 −3.800 −1.921 −0.963 −3.585 −1.499 −0.751 −2.796
Average −1.994 −1.863 −3.625 −2.428 −1.786 −3.446 −1.894 −1.393 −2.688
Specific −6.970 −6.638 −8.256 −7.374 −6.522 −8.315 −5.752 −5.087 −6.486

h ∈ [0.35; 0.95]
h = 0.5 −0.522 −0.483 −2.302 −0.528 −0.529 −2.235 −0.412 −0.413 −1.743
Polling 0.014 0.087 −1.758 0.028 0.047 −1.714 0.022 0.036 −1.337
Average 0.030 0.109 −1.754 0.075 0.100 −1.671 0.058 0.078 −1.304
Specific −0.891 −0.766 −2.306 −0.654 −0.517 −2.210 −0.510 −0.403 −1.724

h ∈ [0.25; 0.75]
h = 0.5 −0.522 −0.483 −1.056 −0.528 −0.529 −1.119 −0.412 −0.413 −0.872
Polling −0.382 −0.245 −0.766 −0.279 −0.200 −0.740 −0.218 −0.156 −0.577
Average −0.339 −0.288 −0.738 −0.155 −0.087 −0.714 −0.121 −0.068 −0.557
Specific −2.014 −1.855 −2.029 −1.900 −1.533 −1.842 −1.482 −1.196 −1.436

Note: The table provides the RMSE for the out-of-sample one-step ahead forecasting exercise comparing 4
different intervals for the identification of the optimal bandwidth parameter. The results are expressed as a
deviation from the RMSE produced by the benchmark model, FMcB.
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Table A2. Percentage reduction in RMSEs for different sample.

25 Portfolios 55 Portfolios 200 Stocks

hw=12 hw=24 hKern hw=12 hw=24 hKern hw=12 hw=24 hKern

08/1973–01/2020
h = 0.5 −0.522 −0.483 −2.302 −0.528 −0.529 −2.235 −0.535 −0.664 −1.902
Polling −0.396 −0.168 −2.140 −0.219 −0.196 −1.943 0.033 −0.014 −1.382
Average −0.424 −0.444 −2.048 −0.147 0.019 −1.871 0.102 −0.107 −1.413
Specific −5.800 −5.383 −6.738 −5.349 −4.444 −6.339 −2.393 −2.119 −3.310

08/1973 − 08/2007
h = 0.5 0.334 0.719 −1.033 −0.947 −0.608 −2.263 −0.794 −0.510 −1.896
Polling 0.401 0.956 −0.959 −0.717 −0.238 −2.076 −0.601 −0.199 −1.740
Average 0.471 0.921 −0.913 −0.648 −0.151 −1.926 −0.543 −0.127 −1.614
Specific −2.688 −1.904 −3.925 −3.233 −2.369 −4.696 −2.709 −1.986 −3.935

Note: The table provides the RMSE for the out-of-sample one-step ahead forecasting exercise comparing different
sub samples identified around the global financial crisis (08/1973–08/2007). The results are expressed as a
deviation from the RMSE produced by the benchmark model, FMcB.

Table A3. Percentage reduction in RMSEs for different penalization parameters in LASSO.

25 Portfolio 55 Portfolio 200 Stocks

hw=12 hw=24 hKern hw=12 hw=24 hKern hw=12 hw=24 hKern

No Lasso
h = 0.5 −0.522 −0.483 −2.302 −0.528 −0.529 −2.235 −0.535 −0.664 −1.902
Polling −0.396 −0.168 −2.140 −0.219 −0.196 −1.943 0.033 −0.014 −1.382
Average −0.424 −0.444 −2.048 −0.147 0.019 −1.871 0.102 −0.107 −1.413
Specific −5.800 −5.383 −6.738 −5.349 −4.444 −6.339 −2.393 −2.119 −3.310

λ = 0.0001
h = 0.5 −0.522 −0.483 −2.302 −0.528 −0.529 −2.235 −0.328 −0.328 −1.386
Polling −0.556 −0.369 −2.496 −0.311 −0.142 −1.983 −0.193 −0.088 −1.229
Average −1.294 −1.352 −4.975 −0.158 −0.019 −1.810 −0.098 −0.012 −1.122
Specific −6.821 −6.271 −10.188 −5.229 −4.625 −6.066 −3.242 −2.868 −3.761

λ = 0.00005
h = 0.5 −0.522 −0.483 −2.302 −0.528 −0.529 −2.235 −0.328 −0.328 −1.386
Polling −0.469 −0.229 −2.196 −0.311 −0.142 −1.983 −0.193 −0.088 −1.229
Average −0.514 −0.410 −2.202 −0.134 −0.026 −1.806 −0.083 −0.016 −1.120
Specific −6.417 −5.661 −6.676 −5.197 −4.617 −6.015 −3.222 −2.862 −3.729

Note: The table provides the RMSE for the out-of-sample one-step ahead forecasting exercise when we consider
the LASSO procedure inside our mechanism for the identification of the optimal bandwidth. Here, we report the
results for 2 values of the penalty function, λ = 0.0001 and 0.00005. The results are expressed as a deviation from
the RMSE produced by the benchmark model, FMcB.

Table A4. Percentage reduction in RMSEs for different sample size of the trading period.

25 Portfolios 55 Portfolios 200 Stocks

hw=12 hw=24 hKern hw=12 hw=24 hKern hw=12 hw=24 hKern

T = 60
h = 0.5 −0.522 −0.483 −2.302 −0.528 −0.529 −2.235 −0.535 −0.664 −1.902
Polling −0.396 −0.168 −2.140 −0.219 −0.196 −1.943 0.033 −0.014 −1.382
Average −0.424 −0.444 −2.048 −0.147 0.019 −1.871 0.102 −0.107 −1.413
Specific −5.800 −5.383 −6.738 −5.349 −4.444 −6.339 −2.393 −2.119 −3.310

T = 180
h = 0.5 1.629 2.964 −0.490 2.641 4.327 0.435 2.213 3.626 0.365
Polling 1.724 3.522 −0.430 3.055 5.114 0.809 2.560 4.286 0.678
Average 1.986 3.558 −0.160 3.613 5.488 1.377 3.027 4.599 1.154
Specific −3.454 −1.310 −5.815 −0.952 1.820 −3.835 −0.798 1.525 −3.214

T = 120
h = 0.5 0.534 1.152 −1.654 −1.517 −0.974 −3.623 −1.271 −0.816 −3.036
Polling 0.642 1.531 −1.535 −1.148 −0.381 −3.324 −0.962 −0.319 −2.786
Average 0.753 1.474 −1.461 −1.037 −0.242 −3.084 −0.869 −0.203 −2.585
Specific −4.303 −3.049 −6.284 −5.176 −3.794 −7.518 −4.338 −3.179 −6.300

Note: The table provides the RMSE for the out-of-sample one-step ahead forecasting exercise comparing 3
different trading periods T for the identification of the optimal bandwidth parameter. The results are expressed as
a deviation from the RMSE produced by the benchmark model, FMcB.
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Table A5. Percentage reduction in RMSEs for different asset pricing models.

25 Portfolios 55 Portfolios 200 Stocks

hw=12 hw=24 hKern hw=12 hw=24 hKern hw=12 hw=24 hKern

3 Factors
h = 0.5 −0.522 −0.483 −2.302 −0.528 −0.529 −2.235 −0.535 −0.664 −1.902
Polling −0.396 −0.168 −2.140 −0.219 −0.196 −1.943 0.033 −0.014 −1.382
Average −0.424 −0.444 −2.048 −0.147 0.019 −1.871 0.102 −0.107 −1.413
Specific −5.800 −5.383 −6.738 −5.349 −4.444 −6.339 −2.393 −2.119 −3.310

MOM Factor
h = 0.5 −0.569 −0.526 −2.508 −0.576 −0.577 −2.435 −0.357 −0.358 −1.510
Polling −0.606 −0.402 −2.720 −0.339 −0.155 −2.160 −0.210 −0.096 −1.339
Average −1.409 −1.473 −5.420 −0.172 −0.021 −1.972 −0.106 −0.013 −1.223
Specific −7.432 −6.832 −11.099 −5.697 −5.039 −6.608 −3.532 −3.124 −4.097

5 Factors
h = 0.5 −0.655 −0.605 −2.889 −0.663 −0.664 −2.805 −0.411 −0.412 −1.739
Polling −0.589 −0.287 −2.756 −0.390 −0.179 −2.488 −0.242 −0.111 −1.543
Average −0.645 −0.514 −2.763 −0.168 −0.032 −2.266 −0.104 −0.020 −1.405
Specific −8.053 −7.103 −8.378 −6.522 −5.793 −7.548 −4.044 −3.592 −4.680

Note: The table provides the RMSE for the out-of-sample one-step ahead forecasting exercise comparing 3
different asset pricing models: 3-factor Fama and French (1992) model, momentum factor by Carhart (1997) and
the 5-factor model by Fama and French (2015) for the identification of the optimal bandwidth parameter. The
results are expressed as a deviation from the RMSE produced by the benchmark model, FMcB.

Notes
1 The aim of the paper is to produce evidence in support of the importance of the bandwidth liberalisation in a factor model. Any

analysis about the importance of the factor is beyond the scope of the paper. In Appendix C, the methodology is applied to
different well-established factor models.

2 The only Standard and Poor’s constituents which are used are for data available for the entire sample
3 See Section 5.1 and Appendix C for robustness checks against other well know financial factors—the momentum factor, MOM,

by Carhart (1997), which is computed as the average return on the two high prior return portfolios minus the average return on
the two low prior return portfolios. Finally, the methodology is tested on the five-factor model by Fama and French (2015). These
additional factors represent the robust minus weak, RMW, and the conservative minus aggressive, CMA, factors. The RMW factor
is the average return on the two robust operating profitability portfolios minus the average return on the two weak operating
profitability portfolio, while CMA represents the average return on the two conservative investment portfolios minus the average
return on the two aggressive investment portfolios.

4 The remainder of the paper reports the results concerning the kernel approach methodology for the computation of the time-
varying RMSEt, as in Equation (6). The results for the other two approaches are available upon request to the authors

5 The aim of the paper is to produce evidence in support of the importance of the bandwidth liberalisation in a factor model. Any
analysis about the importance of the factor is beyond the scope of the paper.

6 The purpose of the paper is not to identify the best factors but the identification of the best methodology. Therefore, to guarantee
an identical setting, the factors in the model are fixed.
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