504 research outputs found

    Organizational Stress in High-Level Field Hockey: Examining Transactional Pathways Between Stressors, Appraisals, Coping, and Performance Satisfaction

    Get PDF
    This study investigated transactional pathways between organizational stressors and their 28 underpinning situational properties, appraisals, coping, perceived coping effectiveness (PCE) 29 and performance satisfaction in athletes. Ten high-level field hockey players were 30 interviewed. Data relating to stressors, situational properties, appraisals and coping were 31 analysed using directed content analysis. Mean PCE scores were calculated and subjective 32 performance satisfaction data were categorised as satisfied, neutral, or dissatisfied. A variety 33 of organizational stressors was reported, which were underpinned by five situational 34 properties. Challenge, threat and harm/loss appraisals were experienced and problem solving 35 was the most commonly reported family of coping. High PCE was not always associated with 36 performance satisfaction. Performance satisfaction was, however, linked to the appraisal 37 experienced. A battery of stress management techniques and ways of coping is useful for 38 optimising appraisals and alleviating negative outcomes of stress

    The analysis of acetaminophen (paracetamol) and seven metabolites in rat, pig and human plasma by U(H)PLC–MS

    Get PDF
    A U(H)PLC–MS/MS method is described for the analysis of acetaminophen and its sulphate, glucuronide, glutathione, cysteinyl and N-acetylcysteinyl metabolites in plasma using stable isotope-labeled internal standards. P-Aminophenol glucuronide and 3-methoxyacetaminophen were monitored and semi-quantified using external standards. The assay takes 7.5 min/sample, requires only 5 μl of plasma and involves minimal sample preparation. The method was validated for rat plasma and cross validated for human and pig plasma and mouse serum. LOQ in plasma for these analytes were 0.44 μg/ml (APAP-C), 0.58 μg/ml (APAP-SG), 0.84 μg/ml (APAP-NAC), 2.75 μg/ml (APAP-S), 3.00 μg/ml (APAP-G) and 16 μg/ml (APAP). Application of the method is illustrated by the analysis of plasma following oral administration of APAP to male Han Wistar rats

    Hsp90 orchestrates transcriptional regulation by Hsf1 and cell wall remodelling by MAPK signalling during thermal adaptation in a pathogenic yeast

    Get PDF
    Acknowledgments We thank Rebecca Shapiro for creating CaLC1819, CaLC1855 and CaLC1875, Gillian Milne for help with EM, Aaron Mitchell for generously providing the transposon insertion mutant library, Jesus Pla for generously providing the hog1 hst7 mutant, and Cathy Collins for technical assistance.Peer reviewedPublisher PD

    Small but crucial : the novel small heat shock protein Hsp21 mediates stress adaptation and virulence in Candida albicans

    Get PDF
    Peer reviewedPublisher PD

    Haptic Edge Detection Through Shear

    Get PDF
    Most tactile sensors are based on the assumption that touch depends on measuring pressure. However, the pressure distribution at the surface of a tactile sensor cannot be acquired directly and must be inferred from the deformation field induced by the touched object in the sensor medium. Currently, there is no consensus as to which components of strain are most informative for tactile sensing. Here, we propose that shape-related tactile information is more suitably recovered from shear strain than normal strain. Based on a contact mechanics analysis, we demonstrate that the elastic behavior of a haptic probe provides a robust edge detection mechanism when shear strain is sensed. We used a jamming-based robot gripper as a tactile sensor to empirically validate that shear strain processing gives accurate edge information that is invariant to changes in pressure, as predicted by the contact mechanics study. This result has implications for the design of effective tactile sensors as well as for the understanding of the early somatosensory processing in mammals

    The Mitochondrial Ca(2+) Uniporter: Structure, Function, and Pharmacology.

    Get PDF
    Mitochondrial Ca(2+) uptake is crucial for an array of cellular functions while an imbalance can elicit cell death. In this chapter, we briefly reviewed the various modes of mitochondrial Ca(2+) uptake and our current understanding of mitochondrial Ca(2+) homeostasis in regards to cell physiology and pathophysiology. Further, this chapter focuses on the molecular identities, intracellular regulators as well as the pharmacology of mitochondrial Ca(2+) uniporter complex

    Selective Ion Changes during Spontaneous Mitochondrial Transients in Intact Astrocytes

    Get PDF
    The bioenergetic status of cells is tightly regulated by the activity of cytosolic enzymes and mitochondrial ATP production. To adapt their metabolism to cellular energy needs, mitochondria have been shown to exhibit changes in their ionic composition as the result of changes in cytosolic ion concentrations. Individual mitochondria also exhibit spontaneous changes in their electrical potential without altering those of neighboring mitochondria. We recently reported that individual mitochondria of intact astrocytes exhibit spontaneous transient increases in their Na+ concentration. Here, we investigated whether the concentration of other ionic species were involved during mitochondrial transients. By combining fluorescence imaging methods, we performed a multiparameter study of spontaneous mitochondrial transients in intact resting astrocytes. We show that mitochondria exhibit coincident changes in their Na+ concentration, electrical potential, matrix pH and mitochondrial reactive oxygen species production during a mitochondrial transient without involving detectable changes in their Ca2+ concentration. Using widefield and total internal reflection fluorescence imaging, we found evidence for localized transient decreases in the free Mg2+ concentration accompanying mitochondrial Na+ spikes that could indicate an associated local and transient enrichment in the ATP concentration. Therefore, we propose a sequential model for mitochondrial transients involving a localized ATP microdomain that triggers a Na+-mediated mitochondrial depolarization, transiently enhancing the activity of the mitochondrial respiratory chain. Our work provides a model describing ionic changes that could support a bidirectional cytosol-to-mitochondria ionic communication
    corecore