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Abstract

Systemic infections of humans with the fungal pathogen Candida albicans are associated with a high mortality rate.
Currently, efficient treatment of these infections is hampered by the relatively low number of available antifungal drugs. We
recently identified the small heat shock protein Hsp21 in C. albicans and demonstrated its fundamental role for
environmental stress adaptation and fungal virulence. Hsp21 was found in several pathogenic Candida species but not in
humans. This prompted us to investigate the effects of a broad range of different antifungal drugs on an Hsp21-null C.
albicans mutant strain. Our results indicate that combinatorial therapy targeting Hsp21, together with specific antifungal
drug targets, has strong synergistic potential. In addition, we demonstrate that Hsp21 is required for tolerance to ethanol-
induced stress and induction of filamentation in response to pharmacological inhibition of Hsp90. These findings might
pave the way for the development of new treatment strategies against Candida infections.
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Introduction

Candida albicans is one of the major fungal pathogens of humans

and can cause life-threatening systemic infections with mortality

rates approaching 50% [1]. Treatment of such infections is

complicated due to the restricted number of efficient antifungal

drugs, antifungal drug toxicity, and insufficient diagnostic tools

[2,3]. An emerging field of antifungal drug research is the

combination of immunotherapeutic approaches with antifungal

approaches, such as, for example, the combination of anti-Hsp90

antibodies with caspofungin, fluconazole, or amphotericin B [4,5].

Three major classes of antifungals are used for the treatment of

fungal infections: polyenes, which target ergosterol and cell

membrane integrity; allylamines and azoles, which both block

the ergosterol biosynthetic enzyme Erg11 (also known as lanosterol

14a-demethylase) and lead to an accumulation of toxic sterols; and

echinocandins, which inhibit the b-1,3 glucan synthase and

compromise cell wall integrity [6].

Heat shock proteins (Hsps) are found in virtually all living

organisms, including humans and fungi. They fulfill a plethora of

cellular functions, including folding, unfolding or refolding of other

proteins (clients), translocation of client proteins across mem-

branes, activation of clients, and prevention of uncontrolled

protein aggregation [7]. Hsps are constitutively present within

cells, however their expression rises dramatically upon stress;

indeed, Hsp concentrations can reach over 20% of total cell

protein [8]. Application of thermal stress to the model host

Drosophila melanogaster led to the discovery of the heat shock

response [9]. Later studies revealed that expression of specialized

proteins, the Hsps, is strongly induced in response to heat and

other forms of stress. Hsps are divided into five classes - Hsp100,

Hsp90, Hsp70, Hsp60 and the small heat shock proteins (sHsps) -

depending on their molecular mass [10,11].

One of the most conserved and best investigated Hsps is Hsp90.

Except for archaea, all living organisms encode at least one Hsp90

protein [12]. This essential chaperone is present in large quantities

in cells even under non-stress conditions. Upon environmental

stress, Hsp90 levels approximately double [12]. Hsp90 is a dimer

and its function was shown to be ATP-dependent. Transcription of

the HSP90 gene is regulated by the transcription factor heat shock

factor 1 (HSF1).

In humans, the function of Hsp90 has been associated with

cancer. The chaperone was shown to protect cancer cells from

extracellular stresses thereby promoting oncogenesis [7]. Conse-

quently, Hsp90 has emerged as an attractive target for cancer

treatment. Three different families of Hsp90 chaperones are found

in humans. The first family, Hsp90 A, is localized to the cytoplasm

and consists of Hsp90 AA1, Hsp90 AA2 and Hsp90 AB1. Hsp90 B

forms the second class and contains the endoplasmic reticulum-

localized chaperone, endoplasmin (also known as GRP-94).

Finally, TRAP1 (also known as Hsp75) is present in mitochondria

and is part of the TRAP family of Hsp90 proteins [7].

In C. albicans, the heat shock inducible HSP90 gene was first

investigated by the Brown laboratory and shown to be essential for

viability [13]. Later work by the Cowen laboratory established that

Hsp90 enables the emergence of drug resistance by stabilizing the
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protein phosphatase calcineurin and the mitogen activated protein

(MAP) kinase Mkc1 [14–16]. Moreover, Hsp90 was shown to

regulate biofilm dispersion and drug resistance and to be required

for virulence [17,18]. Because of the central role of Hsp90 in the

C. albicans chaperone network, targeting Hsp90 has been proposed

as an effective therapeutic strategy [19]. However, mammalian

and fungal Hsp90 share a high degree of similarity and it was

shown that targeting Hsp90 in mice results in serious toxic side-

effects [19]. Human and murine Hsp90 share approximately 99%

identity on the protein level. Hence, albeit not investigated, it is

very likely that targeting C. albicans Hsp90 in human patients

would also result in serious side-effects.

C. albicans occurs in three main morphological forms: yeast,

pseudohyphal and hyphal cells. The transition from yeast to

filamentous cells has been recognized as an important virulence

trait in C. albicans as mutants defective in this transition are

attenuated in virulence [20]. Several cues promote the yeast-to-

hyphal switch including serum, temperatures of 37uC or higher, a

high pH (. 7) and low cell densities (, 107 cells ml-1) [21]. The

Cowen laboratory elegantly demonstrated that compromising

Hsp90 function, either genetically or pharmacologically, results in

filament formation under non-hypha-inducing conditions [18].

Indeed, the authors found Hsp90 to repress one of the key hyphae-

inducing pathways, the cAMP-PKA signaling pathway, under

these conditions.

In comparison to Hsp90 and the other higher molecular mass

Hsps, the class of small Hsps has historically received only little

attention. The only two sHsps that have recently been investigated

in C. albicans are Hsp12 and Hsp21. Despite being strongly

upregulated in response to a wide variety of environmental

stresses, both on a transcriptional and protein level, Hsp12 was

shown to be dispensable for stress resistance, morphogenesis and

virulence in a Drosophila model of infection [22]. Hsp21 is also

strongly induced upon various environmental stresses [23–29]. We

demonstrated that Hsp21 is required for thermal and oxidative

stress tolerance in C. albicans [30]. Moreover, Hsp21 was required

for normal filamentation, regulation of intracellular levels of the

stress-protective molecule trehalose, and activation of the mitogen-

activated protein (MAP) kinase Cek1. An hsp21D/D mutant had

impaired capacity to damage endothelial and oral epithelial cells in

vitro, had increased sensitivity to human neutrophils, and was

strongly attenuated in virulence in two in vivo infection models: an

embryonated hen egg infection model and a mouse infection

model of hematogenously disseminated candidiasis [30].

Here, we have investigated the suitability of Hsp21 as a novel

therapeutic target for the treatment of candidiasis. We demon-

strate strong synergistic effects between Hsp21 inactivation and

specific antifungal drug treatment. Moreover, we show that whilst

HSP21 orthologues are present in the majority of pathogenic

Candida species, the gene is not found in humans. These results

indicate that Hsp21 represents an attractive alternative to Hsp90

for combinatorial immunotherapeutic-antifungal treatment strat-

egies.

Results

Phylogenetic relatedness of C. albicans Hsp21 and
human sHsps

Targeting the molecular chaperone Hsp90 in C. albicans has

been proposed to be an attractive strategy to combat infection.

Indeed, compromising Hsp90 leads to reduced biofilm formation

[17], increased sensitivity to antifungal drugs [14,16], and

attenuated virulence of C. albicans in a mouse model of

hematogenously disseminated candidasis [14,18,19]. However, a

considerable drawback to targeting this fungal Hsp in a clinical

setting is the cross-reactivity with human Hsps. Humans encode

five Hsp90 proteins: Hsp90 AA1, Hsp90 AA2, Hsp90 AB1,

endoplasmin, and TRAP1. CaHsp90 shares 60–70% identity with

human Hsp90 AA1, Hsp90 AA2 and Hsp90 AB1, around 47%

identity with endoplasmin and approximately 34% identity with

TRAP1 on the protein level (Figure 1 and Table 1). This

significant overlap in sequence prompted us to search for

alternative / additional fungal Hsp targets. Recently, we have

identified and characterized the sHsp Hsp21 in C. albicans [30].

Deletion of HSP21 negatively affected environmental stress

tolerance, resulted in reduced capacity to damage endothelial

and oral epithelial cells in vitro, and strongly attenuated virulence in

a mouse model of hematogenously disseminated candidasis [30].

Humans encode 10 sHsps, HspB1-10 [31]. Alignments revealed

that Hsp21 is only distantly related to the 10 human sHsps (Figure

1) and the percentage identities on the protein level were only 11–

15% (Table 1). Moreover, BLASTp analysis of the Hsp21 protein

sequence directly against the human proteome identified the anion

exchange transporter, SUT2, as best hit. An alignment of the

Hsp21 and SUT2 protein sequences revealed 12.7% identity

between both proteins. In contrast, C. albicans Hsp21 shares 96%,

53%, 40%, and 38% identity with uncharacterized proteins from

Candida dubliniensis, Candida tropicalis, Candida parapsilosis, and

Candida orthopsilosis, respectively, and 39% identity with the

uncharacterized sHsp Hsp18 from Pichia stipitis (Figure 1 and

[30]). These results indicate that Hsp21 might represent an

attractive anticandidal target as it is present in several pathogenic

Candida species, but not found in humans.

Hsp21 contributes to resistance against ethanol-induced
stress

Most antifungal agents in clinical use target cell membrane

localized ergosterol, ergosterol biosynthesis or biosynthesis of b-1,3

glucan, which is a major constituent of the fungal cell wall [32].

Ergosterol is a fungal specific sterol present in cell membranes and

required for cell membrane permeability and fluidity. We

previously found that an hsp21D/D mutant had normal resistance

to cell wall directed stresses [30]. We therefore investigated the

effects of ethanol (which induces cell membrane disturbances and

protein unfolding) on growth of the mutant. Following growth in

liquid YPD medium supplemented with 5% ethanol, the hsp21D/

D mutant (final OD600 = 4.8) was found to be significantly more

susceptible to ethanol-induced stress in comparison to the wild

type (final OD600 = 10.2) (Figure 2A). Additionally, the hsp21D/D
mutant displayed a strong growth defect under ethanol stress on

agar-containing medium in comparison to the wild type and

revertant (hsp21D/D::HSP21) (Figure 2B). These results indicate

that Hsp21 contributes to ethanol stress tolerance in C. albicans,

and suggest that Hsp21 might also be required for normal

resistance to antifungal drugs which target the fungal cell

membrane.

Hsp21 potentiates resistance to antifungal drugs
We next explored the effects of a comprehensive range of

antifungal drugs on growth of the hsp21D/D mutant (Figures 3 and

4). Drugs targeting biosynthesis of ergosterol included the

allylamine, terbinafine, and the imidazoles, clotrimazole and

bifonazole. In order to directly target ergosterol we used

amphotericin B. Furthermore, we included antifungal drugs

directed against b-1,3 glucan biosynthesis (caspofungin), or

microtubuli (nocodazole).

In YPD medium (Figure 3A) or YPD medium supplemented

with the drug vehicle DMSO (Figure 3B) the wild type, hsp21D/D

Hsp21 and Antifungal Drug Tolerance
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Figure 1. Phylogenetic relationship of C. albicans Hsp21 and Hsp90 with human sHsps and Hsp90 proteins. C. albicans Hsp90 is closely
related to the five human Hsp90 proteins. Hsp21 from C. albicans is only distantly related to the 10 known sHsps of humans, but is similar to
uncharacterized proteins from C. dubliniensis, C. tropicalis, C. parapsilosis, C. orthopsilosis, and to the uncharacterized sHsps Hsp18 from P. stipitis.
HspB1-10, human heat shock protein beta 1–10; Hsp90 AA1/2, heat shock protein 90 alpha class A member 1/2; Hsp90 AB1, heat shock protein 90
alpha class B member 1; TRAP1, tumor necrosis factor type 1 receptor-associated protein.
doi:10.1371/journal.pone.0060417.g001

Table 1. Similarity of C. albicans Hsp21 and Hsp90 with
human sHsps and Hsp90 proteins.

C. albicans Homo sapiens Identity (%)

Hsp90 Hsp90 AA1 63.5

Hsp90 AA2 69.0

Hsp90 AB1 70.3

Endoplasmin 47.5

TRAP1 34.3

Hsp21 HspB1 12.0

HspB2 15.3

HspB3 11.1

HspB4 15.4

HspB5 14.7

HspB6 14.1

HspB7 14.9

HspB8 11.4

HspB9 10.9

HspB10 12.1

The C. albicans Hsp90 and Hsp21 protein sequences were retrieved from the
Candida Genome Database (CGD). Human sHsp and Hsp90 protein sequences
were retrieved from the UniProt database. Sequences were aligned and
analysed for percentage identity using the Clustal W method in the DNASTAR
Lasergene MegAlign sequence analysis software.
doi:10.1371/journal.pone.0060417.t001

Figure 2. Hsp21 contributes to cell membrane directed stress
tolerance. The hsp21D/D mutant is more susceptible to ethanol-
induced cell membrane stress in comparison to the wild type (Wt). (A)
Fungal YPD-overnight cultures were adjusted to OD600 = 1 in YPD
alone or YPD supplemented with 5% ethanol. Strains were incubated
for 24 h at 30uC and 210 rpm in a shaking incubator and the OD600 was
determined. Results are the mean 6 SD of three independent
experiments. *P,0.05. (B) Serial drop dilution assays on SD agar or
SD agar supplemented with 5% ethanol. Plates were incubated at 37uC
for 2–6 days. The experiment was repeated twice in duplicate.
Representative pictures are shown.
doi:10.1371/journal.pone.0060417.g002

Hsp21 and Antifungal Drug Tolerance
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mutant, and hsp21D/D::HSP21 complemented strain displayed

very similar growth. In YPD medium supplemented with 10 mg

ml-1 terbinafine, the hsp21D/D mutant exhibited strongly reduced

growth in comparison to the wild type and complemented strain

(Figure 3C). In the presence of 1 mM clotrimazole (Figure 3D) or

bifonazole (Figure 3E), the hsp21D/D mutant also exhibited

reduced growth in comparison to the wild type and revertant. In

the presence of 5 mg ml-1 nocodazole, which targets fungal

microtubuli, the hsp21D/D mutant exhibited impaired growth in

comparison to the wild type and complemented strain (Figure 3F).

Exposure to 2 mg ml-1 caspofungin resulted in complete growth

inhibition of the hsp21D/D mutant (Figure 3G). In contrast, both

the wild type and revertant strain were able to grow under these

conditions. To directly target ergosterol, the strains were exposed

Figure 3. Hsp21 potentiates antifungal drug resistance in C. albicans. Growth curves of the indicated strains in YPD medium (A), YPD
medium supplemented with dimethyl sulfoxide (DMSO) (B), YPD medium supplemented with 10 mg ml-1 terbinafine (C), 1 mM clotrimazole (D),
1 mM bifonazole (E), 5 mg ml-1 nocodazole (F), 2 mg ml-1 caspofungin (G), or YPD medium supplemented with 250 mg ml-1 FK506 (H). Growth was
recorded in an ELISA reader at 37uC for the indicated time. Results are the mean 6 SD of two independent experiments, each performed in
quadruplicate.
doi:10.1371/journal.pone.0060417.g003

Hsp21 and Antifungal Drug Tolerance
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to amphotericin B in a drug diffusion assay (Figure 4). While

exposure to the vehicle DMSO did not inhibit growth of either

strain, application of 1 mg ml-1 amphotericin B resulted in growth

inhibition zones for all three strains (Figure 4). While the inhibition

zones were comparable between the wild type and revertant strain

(approximately 18 mm in diameter), the zone of inhibition was

slightly larger for the hsp21D/D mutant (approximately 20 mm in

diameter).

These results indicate that Hsp21 potentiates tolerance to

commonly used antifungal drugs in C. albicans.

Targeting Hsp21 renders C. albicans partially susceptible
to FK506

Transcriptional data suggested that HSP21 lies downstream of

the cyclic AMP (cAMP) pathway [33]. The major molecular

chaperone Hsp90 regulates the GTPase Ras1, which in turn

regulates the cAMP pathway member, Cyr1 (adenylate cyclase).

Hence, Hsp90 directly affects the cAMP pathway. An important

client protein chaperoned by Hsp90 is the protein phosphatase

calcineurin [14,16]. It has been demonstrated that calcineurin is

essential for surviving cell membrane stress [34]. For example, the

combination of the calcineurin inhibitor, FK506, with the

ergosterol biosynthesis-inhibiting azole, fluconazole, resulted in

potent synergistic antifungal activity [34,35].

We therefore investigated whether simultaneously targeting

Hsp21 (which contributes to cell membrane integrity, see above)

and inhibiting calcineurin with the drug FK506 might result in a

similar synergistic effect. Indeed, the hsp21D/D mutant exhibited

markedly delayed growth in the presence of FK506 (Figure 3H).

These results indicate that deletion of HSP21 renders C. albicans

partially susceptible to FK506.

Hsp21 contributes to Hsp90-inhibition induced
filamentation

It has recently been shown that Hsp90 acts as physiological link

between C. albicans morphogenesis and temperature [18,36,37].

Three findings prompted us to investigate Hsp90-inhibition

induced filamentation in the hsp21D/D mutant: first, Hsp21

contributes to normal filamentation in C. albicans [30]; second,

Hsp21 was required for optimal growth upon inhibition of the

Hsp90-regulated phosphatase, calcineurin (see above); and, third,

transcriptional data indicates that Hsp21 and Hsp90 are both part

of the cAMP pathway [33].

Therefore, the effect of the Hsp90 inhibitor radicicol on

filamentation of hsp21ã/ã was investigated. The hsp21D/D mutant

displayed strongly delayed germ tube formation in comparison to

the wild type and revertant (Figure 5A and B). While approx-

imately 30% of wild type and revertant cells formed germ tubes

after 2 h exposure to radicicol, only around 5% of hsp21D/D cells

had begun to filament (Figure 5A and B). After 4 h incubation,

63% of wild type and 48% of revertant cells had formed germ

tubes and started to form longer filaments. In contrast, only

around 13% of hsp21D/D cells had formed short germ tubes and

longer filaments were not yet present (Figure 5A and B). Following

6 h incubation, 78% of wild type and 62% of revertant cells had

filamented. At this time point, although 44% of hsp21ã/ã cells had

filamented (Figure 5B), these were markedly shorter than wild type

and revertant cells (Figure 5A).

Figure 4. Compromising Hsp21 results in moderately increased
susceptibility towards amphotericin B. Amphotericin B suscepti-
bility was assessed with a drug diffusion assay. 46107 cells of the
indicated strains were plated on SD agar and two holes of
approximately 5 mm in diameter were generated and filled with 10 ml
DMSO, or 10 ml amphotericin B (AmpB, 1 mg ml-1), respectively. The
plates were incubated at 37uC for 24 h and then photographed. The
zone of growth inhibition around AmpB-treated holes is larger for the
hsp21D/D mutant in comparison to the wild type (Wt) and reconsti-
tuted strain.
doi:10.1371/journal.pone.0060417.g004

Figure 5. Hsp21 contributes to Hsp90 inhibition-induced
filamentation. Analysis of Hsp90 inhibition-induced filamentation
dynamics in the hsp21D/D mutant. (A) YPD overnight cultures of the
wild type (Wt), hsp21D/D mutant and hsp21D/D::HSP21 complemented
strain were subcultured in fresh YPD medium supplemented with
27 mM radicicol and incubated for the indicated time at 37uC.
Representative pictures were captured with an inverse microscope
(Leica DMIL). (B) Quantification of the percentage filamentation from
(A). Results are the mean 6 SD of two independent experiments, each
performed in quadruplicate. At least 50 random cells per strain and
experiment were examined. **P,0.01 and ***P,0.001 compared with
the wild type and hsp21D/D::HSP21 complemented strain.
doi:10.1371/journal.pone.0060417.g005

Hsp21 and Antifungal Drug Tolerance
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Taken together, these results indicate that Hsp21 plays a role in

filament induction in response to Hsp90-inhibition.

Discussion

In the current study, we have evaluated the suitability of

targeting fungal heat shock proteins as a potential therapeutic

strategy. Fungal Hsp90 has previously been investigated as a

immunotherapeutic target; however, cross-reactivity against mam-

malian Hsp90 proteins has hampered the development of anti-

Hsp90 therapy for the treatment of fungal disease [19].

A recent quantitative analysis revealed that the major molecular

chaperone Hsp90 interacts with nearly 400 client proteins in

humans (almost 2% of the proteome) [38]. Hsp90 regulates the

shape and function of many important signal transducers, mainly

kinases, E3 ligases, and transcription factors [38]. Together with

other Hsps, Hsp90 prevents unfolding and aggregation of client

proteins both under non-stress conditions and upon environmental

stresses, thereby ensuring cell survival.

Hsps are strongly expressed in human cancer cells and protect

these cells from environmental insults [7]. Therefore, in the setting

of cancer, the chaperoning functions of Hsps, and in particular

Hsp90, actually promote tumour cell survival and proliferation. As

a consequence, targeting human Hsp90 in human tumours has

been proposed to be an attractive anti-cancer strategy [7].

In C. albicans, Hsp90 regulates antifungal drug resistance,

biofilm formation and virulence, and interacts with at least 200

distinct proteins [16–18,39]. In addition, Hsp90 regulates

temperature-dependent filamentation and thereby directly con-

tributes to the virulence potential of the fungus [18]. Hence,

targeting Hsp90 in C. albicans has been proposed to be a promising

antifungal strategy. However, Hsp90 from C. albicans is very

similar to human Hsp90. Therapeutic targeting of fungal Hsp90

would therefore result in significant side-effects for patients due to

simultaneous inhibition of human Hsp90. Moreover, humans

encode five Hsp90 proteins which all display significant similarity

to the fungal counterpart (Table 1 and Figure 1). Therefore, the

side-effects of targeting C. albicans Hsp90 would probably not just

be restricted to one human protein, but would extend to a whole

protein family and their respective cellular circuitries. Mice

contain four Hsp90 proteins and experiments in a mouse model

of disseminated candidiasis with Hsp90 inhibitors indicated

significant toxicity for the murine host, thereby precluding

application of such an inhibitor in humans [19]. Efforts are

therefore centered on two refined approaches in Hsp90-targeting.

First, fungal-selective inhibitors might be developed which

specifically target Hsp90 protein sites that are divergent between

human and fungi, e.g. the N-terminal ATPase site [19]. Second,

targeting fungal specific regulators of Hsp90 function, such as

lysine deacetylases, have recently been proposed to be an attractive

alternative to direct Hsp90 targeting [40].

In this work we propose that targeting fungal-specific Hsps

might represent an additional / alternative strategy to combat

Candida infections. We propose that the C. albicans sHsp Hsp21 is a

promising candidate for such an approach for several reasons.

First, we have previously demonstrated that deletion of HSP21

strongly impairs the capacity of C. albicans to damage both

endothelial and oral epithelial cells in vitro, reduces tolerance to the

killing activities of neutrophils, and drastically reduces virulence in

an in vivo mouse model of hematogenously disseminated candidi-

asis [30]. Second, in this study we establish that targeting Hsp21

results in significantly enhanced efficacy of most currently used

antifungal drugs (Figure 3 and 4). Third, Hsp21 is not found in

humans and displays only distant relation to human sHsps. And

fourth, Hsp21 orthologues are found in the clinically relevant

fungal pathogens C. dubliniensis, C. tropicalis, and C. parapsilosis [30].

Potential anti-Hsp21 drugs therefore would fulfill the most

important requirements of a novel anticandidal compound,

including specificity against pathogenic fungal cells only, few

expected side-effects for patients, and efficacy against several

pathogenic fungi. It should be noted, however, that Hsp21 is not

found in other important fungal pathogens of humans, including

Candida glabrata, Aspergillus fumigatus, Cryptococcus neoformans, or

Coccidioides immitis. Nevertheless, combined with accurate diagnos-

tics, or rational prophylaxis, targeting such a fungal virulence

factor may represent an effective treatment strategy.

Deletion of Hsp90 in C. albicans has been demonstrated to

abrogate the emergence of drug resistance [41]. It will be

intriguing to investigate a potential role of Hsp21 in the evolution

of antifungal drug resistance.

Small heat shock proteins have been proposed to prevent

deleterious protein aggregation of partially unfolded proteins

under environmental stress conditions by binding these clients in a

sponge-like manner. In cooperation with major Hsps, such as

Hsp70 or Hsp104, these clients are then either refolded or passed

on to the degradation machinery for removal. Although the exact

mechanistic function of Hsp21 remains to be elucidated, evidence

suggests that this sHsp regulates intracellular levels of trehalose,

possibly by activation of the mitogen-activated protein kinase Cek1

[30].

In the present investigation, we establish that Hsp21 potentiates

the resistance of C. albicans towards several antifungal drugs.

Deletion of Hsp21 resulted in strongly reduced growth rates in the

presence of terbinafine, an allylamine that targets biosynthesis of

ergosterol (Figure 3C). Ergosterol is the fungal-specific counterpart

of human cholesterol and promotes cell membrane rigidity [42].

These results fit well with the finding that an hsp21D/D mutant

had strongly reduced tolerance towards ethanol-stress which

perturbs the plasma membrane (Figure 2). It should be mentioned,

however, that ethanol also induces protein unfolding, besides

affecting membrane fluidity [43]. Hsp21 was previously shown to

regulate intracellular levels of the stress-protective molecule

trehalose under environmental stress conditions [30]. Interestingly,

Saccharomyces cerevisiae TPS1 mutants (which are unable to

synthesize trehalose), are unable to grow in the presence of

ethanol [44]. A role of Hsp21 in stabilizing client proteins during

ethanol-induced stress, either directly or via regulation of

trehalose, can therefore not be excluded at this stage.

The clinically used azoles, clotrimazole and bifonazole, also

target the biosynthesis of ergosterol. In addition, both azoles were

shown to specifically affect the capacity of C. albicans to damage

vaginal epithelial cells, while not affecting adhesion or invasion

rates [45]. Growth rates of the hsp21D/D mutant were reduced in

the presence of both drugs (Figure 3D and 3E). Direct targeting of

ergosterol with amphotericin B also led to moderately enhanced

sensitivity of an Hsp21-deleted strain (Figure 4). These results

support a role for Hsp21 in cell membrane integrity.

Nocodazole targets microtubuli and we found that deletion of

HSP21 delays growth of the fungus in the presence of this drug

(Figure 3F), suggesting that Hsp21 contributes to the integrity of

the microtubular system under conditions of stress.

Although deletion of Hsp21 did not affect resistance to cell wall

disturbing agents such as Congo red or calcofluor white [30], we

now show that Hsp21 is required for growth in the presence of

caspofungin, an antifungal agent which targets integrity of the

fungal cell wall (Figure 3). Caspofungin specifically targets the

biosynthesis of the cell wall by inhibiting the b-1,3 glucan synthase,

Fks1. Caspofungin belongs to the echinocandin class of antifungals

Hsp21 and Antifungal Drug Tolerance
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and is amongst the most recent drugs to reach the clinic in

decades. Importantly, an hsp21D/D mutant was unable to grow in

the presence of caspofungin under the conditions tested (Figure

3G), suggesting that combinatorial therapy with an Hsp21-

inhibitor and caspofungin may be particularly effective.

Filamentation has been defined as a key virulence attribute in C.

albicans [46], and the Cowen laboratory has demonstrated that the

major chaperone Hsp90 controls this process in a temperature-

dependent manner [18]. We found that deletion of HSP21 and

simultaneous pharmacological inhibition of Hsp90 resulted in

significantly reduced germ tube and filament formation at early

time points (Figure 5). These results suggest that Hsp21 contributes

to filamentation in response to Hsp90 inhibition in C. albicans and

support previous findings that these two Hsps function in the same

pathway [18,33].

The Hsp90 client protein calcineurin is inhibited by the drug

FK506 [47]. Combining anti-calcineurin treatment with antifun-

gal drugs results in a synergistic effect and efficiently kills C. albicans

[34,35,48,49]. We found that simultaneous deletion of HSP21 and

treatment with FK506 resulted in a moderate synergistic effect on

growth of the fungus (Figure 3H). This result strengthens the

concept that Hsp21 functions in the same pathway as Hsp90.

Interestingly, it has recently been shown that the Hsp90 client

protein Sgt1 is also involved in azole and echinocandin resistance,

providing a further link between Hsp90 signalling and tolerance

towards antifungals [50].

In summary, we have established that Hsp21 represents a

promising novel anti-Candida target which could be used as part of

a combinatorial strategy together with certain conventional

antifungal drug treatment.

Materials and Methods

Strains and growth conditions
The triple-auxotrophic strain BWP17 complemented with

plasmid CIp30 [51] was used as wild type control in all

experiments. The hsp21D/D mutant and hsp21D/D::HSP21

complemented strain have been published previously [30]. Strains

were routinely grown on YPD agar [1% yeast extract, 2% bacto-

peptone, 2% D-glucose, 2% agar] or SD minimal medium agar

[2% dextrose, 0.17% yeast nitrogen base, 0.5% ammonium

sulfate, 2% agar]. Overnight liquid cultures were grown in YPD

medium in a shaking incubator at 30uC and 180 rpm. For growth

curves, overnight cultures were diluted to an OD600 of 0.1 in

200 ml final volume of the desired medium. Growth of the strains

was then recorded in sealed 96-well plates by measuring the

OD600 at 30 min intervals for up to 50 hours in an ELISA reader

(Infinite M200, Tecan) [52]. Experiments were performed twice in

quadruplicate.

Ethanol stress
YPD-overnight cultures were adjusted to an OD600 of 1 in YPD

alone or YPD supplemented with 5% ethanol. Strains were then

incubated for 24 h at 30uC and 210 rpm in a shaking incubator,

followed by determination of the OD600. The experiment was

performed three times.

Antifungal drug treatments
The effects of different antifungal drugs on the growth rate of C.

albicans strains were investigated. Growth curves were recorded in

an ELISA reader at 37uC. Antifungal drug concentrations were:

10 mg ml-1 terbinafine (Sigma-Aldrich), 1 mM clotrimazole (Bayer

AG), 1 mM bifonazole (Bayer AG), 5 mg ml-1 nocodazole (Sigma-

Aldrich), and 2 mg ml-1 caspofungin (Cancidas, Merck & Co.,

USA). For inhibition of the calcineurin phosphatase, 250 mg ml-1

FK506 (AppliChem) were added to liquid YPD medium.

Experiments were performed twice in quadruplicate.

Amphotericin B susceptibility was assessed with a drug diffusion

assay. YPD overnight cultures of the respective strains were

adjusted to 108 cells ml-1 and 400 ml of this suspension plated onto

SD agar. Two holes of approximately 5 mm in diameter were

made and filled with 10 ml DMSO, or 10 ml Amphotericin B

(1 mg ml-1, Sigma-Aldrich), respectively. The plates were incu-

bated at 37uC for 24 h and then photographed. The experiment

was repeated twice in duplicate yielding similar results.

Serial dilution drop tests
Aliquots of overnight YPD cultures were washed twice in

phosphate buffered saline (PBS) and 10-fold serial dilutions in 5 ml

(covering a range of 106 to 101 cells) were spotted onto SD agar, or

SD agar containing 5% ethanol and incubated at 37uC for 2-6

days. The experiment was repeated twice in duplicate.

Radicicol-induced filamentation
YPD overnight cultures were subcultured in fresh YPD medium

or YPD medium supplemented with 27 mM radicicol (A.G.

Scientific, San Diego, USA) in 24-well plates and incubated for

2, 4 or 6 hours at 37uC. Experiments were performed in

quadruplicate and repeated twice. Pictures were taken with an

inverse microscope (Leica DMIL) and at least 50 randomly chosen

cells per strain and experiment were examined for filamentation.

Phylogenetic analysis
The phylogenetic tree was constructed using the Clustal W

method in the DNASTAR Lasergene MegAlign sequence analysis

software. All protein sequences were retrieved from CGD’s

(Candida Genome Database) Multi-Genome Search database and

from the Universal Protein Resource Knowledgebase (Uni-

ProtKB).

Statistics
The Student’s t-test was applied for statistical analysis using

GraphPad Prism version 5.00. P-values , 0.05 were considered to

be significant.
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