897 research outputs found
Climate or rural development policy?
Being heavily energy dependent, it is not much of a surprise that Europe pays special attention to reducing the use of fossil fuels. Each one of the ten new member states is characterized by relatively low per capita energy consumption and relatively low energy efficiency, and the share of renewables in their energy mix tends to be low, too. The paper examines the problem when policy measures create a decrease in environmental capital instead of an increase. In this case it hardly seems justified to talk about environmental protection. The authors describe a case of a Hungarian rapeseed oil mill which would not be of too much interest on its own but given that almost all similar plants went bankrupt, there are some important lessons to learn from its survival. The enterprise the authors examined aimed at establishing a micro-regional network. They completed a brown-field development to establish a small plant on the premises of a former large agricultural cooperative. By partnering with the former employees and suppliers of the sometime cooperative, they enjoyed some benefits which all the other green-field businesses focusing on fuel production could not. The project improved food security, energy security and population retention as well
The Quadruple Squeeze: Defining the safe operating space for freshwater use to achieve a triply green revolution in the Anthropocene
Humanity has entered a new phase of sustainability challenges, the Anthropocene, in which human development has reached a scale where it affects vital planetary processes. Under the pressure from a quadruple squeezeâfrom population and development pressures, the anthropogenic climate crisis, the anthropogenic ecosystem crisis, and the risk of deleterious tipping points in the Earth systemâthe degrees of freedom for sustainable human exploitation of planet Earth are severely restrained. It is in this reality that a new green revolution in world food production needs to occur, to attain food security and human development over the coming decades. Global freshwater resources are, and will increasingly be, a fundamental limiting factor in feeding the world. Current water vulnerabilities in the regions in most need of large agricultural productivity improvements are projected to increase under the pressure from global environmental change. The sustainability challenge for world agriculture has to be set within the new global sustainability context. We present new proposed sustainability criteria for world agriculture, where world food production systems are transformed in order to allow humanity to stay within the safe operating space of planetary boundaries. In order to secure global resilience and thereby raise the chances of planet Earth to remain in the current desired state, conducive for human development on the long-term, these planetary boundaries need to be respected. This calls for a triply green revolution, which not only more than doubles food production in many regions of the world, but which also is environmentally sustainable, and invests in the untapped opportunities to use green water in rainfed agriculture as a key source of future productivity enhancement. To achieve such a global transformation of agriculture, there is a need for more innovative options for water interventions at the landscape scale, accounting for both green and blue water, as well as a new focus on cross-scale interactions, feed-backs and risks for unwanted regime shifts in the agro-ecological landscape
Recommended from our members
Integrated crop water management might sustainably halve the global food gap
As planetary boundaries are rapidly being approached, humanity has little room for additional expansion and conventional intensification of agriculture, while a growing world population further spreads the food gap. Ample evidence exists that improved on-farm water management can close water-related yield gaps to a considerable degree, but its global significance remains unclear. In this modeling study we investigate systematically to what extent integrated crop water management might contribute to closing the global food gap, constrained by the assumption that pressure on water resources and land does not increase. Using a process-based bio-/agrosphere model, we simulate the yield-increasing potential of elevated irrigation water productivity (including irrigation expansion with thus saved water) and optimized use of in situ precipitation water (alleviated soil evaporation, enhanced infiltration, water harvesting for supplemental irrigation) under current and projected future climate (from 20 climate models, with and without beneficial CO2 effects). Results show that irrigation efficiency improvements can save substantial amounts of water in many river basins (globally 48% of non-productive water consumption in an 'ambitious' scenario), and if rerouted to irrigate neighboring rainfed systems, can boost kcal production significantly (26% global increase). Low-tech solutions for small-scale farmers on water-limited croplands show the potential to increase rainfed yields to a similar extent. In combination, the ambitious yet achievable integrated water management strategies explored in this study could increase global production by 41% and close the water-related yield gap by 62%. Unabated climate change will have adverse effects on crop yields in many regions, but improvements in water management as analyzed here can buffer such effects to a significant degree
Integrated crop water management might sustainably halve the global food gap
As planetary boundaries are rapidly being approached, humanity has little room for additional expansion and conventional intensification of agriculture, while a growing world population further spreads the food gap. Ample evidence exists that improved on-farm water management can close water-related yield gaps to a considerable degree, but its global significance remains unclear. In this modeling study we investigate systematically to what extent integrated crop water management might contribute to closing the global food gap, constrained by the assumption that pressure on water resources and land does not increase. Using a process-based bio-/agrosphere model, we simulate the yield-increasing potential of elevated irrigation water productivity (including irrigation expansion with thus saved water) and optimized use of in situ precipitation water (alleviated soil evaporation, enhanced infiltration, water harvesting for supplemental irrigation) under current and projected future climate (from 20 climate models, with and without beneficial CO2 effects). Results show that irrigation efficiency improvements can save substantial amounts of water in many river basins (globally 48% of non-productive water consumption in an 'ambitious' scenario), and if rerouted to irrigate neighboring rainfed systems, can boost kcal production significantly (26% global increase). Low-tech solutions for small-scale farmers on water-limited croplands show the potential to increase rainfed yields to a similar extent. In combination, the ambitious yet achievable integrated water management strategies explored in this study could increase global production by 41% and close the water-related yield gap by 62%. Unabated climate change will have adverse effects on crop yields in many regions, but improvements in water management as analyzed here can buffer such effects to a significant degree.Framework of the Leibniz CompetitionFACCE MACSURPeer Reviewe
A roadmap for rapid decarbonization
Although the Paris Agreement's goals (1) are aligned with science (2) and can, in principle, be technically and economically achieved (3), alarming inconsistencies remain between science-based targets and national commitments. Despite progress during the 2016 Marrakech climate negotiations, long-term goals can be trumped by political short-termism. Following the Agreement, which became international law earlier than expected, several countries published mid-century decarbonization strategies, with more due soon. Model-based decarbonization assessments (4) and scenarios often struggle to capture transformative change and the dynamics associated with it: disruption, innovation, and nonlinear change in human behavior. For example, in just 2 years, China's coal use swung from 3.7% growth in 2013 to a decline of 3.7% in 2015 (5). To harness these dynamics and to calibrate for short-term realpolitik, we propose framing the decarbonization challenge in terms of a global decadal roadmap based on a simple heuristicâa âcarbon lawââof halving gross anthropogenic carbon-dioxide (CO2) emissions every decade. Complemented by immediately instigated, scalable carbon removal and efforts to ramp down land-use CO2 emissions, this can lead to net-zero emissions around mid-century, a path necessary to limit warming to well below 2°C
The emergence and evolution of Earth System Science
This is the author accepted manuscript. The final version is available from Nature Research via the DOI in this recordEarth System Science (ESS) is a rapidly emerging transdisciplinary endeavour aimed at understanding the structure and functioning of the Earth as a complex, adaptive system. Here, we discuss the emergence and evolution of ESS, outlining the importance of these developments in advancing our understanding of global change. Inspired by early work on biosphereâgeosphere interactions and by novel perspectives such as the Gaia hypothesis, ESS emerged in the 1980s following demands for a new âscience of the Earthâ. The International Geosphere-Biosphere Programme soon followed, leading to an unprecedented level of international commitment and disciplinary integration. ESS has produced new concepts and frameworks central to the global-change discourse, including the Anthropocene, tipping elements and planetary boundaries. Moving forward, the grand challenge for ESS is to achieve a deep integration of biophysical processes and human dynamics to build a truly unified understanding of the Earth System
Climate tipping points â too risky to bet against
This is the author accepted manuscript. The final version is available from Nature Research via the DOI in this recordThe growing threat of abrupt and irreversible climate changes must compel political and economic action on emissions.Royal SocietyLeverhulme Trus
Recommended from our members
Is wetter better? Exploring agriculturally-relevant rainfall characteristics over four decades in the Sahel
The semi-arid Sahel is a global hotspot for poverty and malnutrition. Rainfed agriculture is the main source of food and income, making the well-being of rural population highly sensitive to rainfall variability. Studies have reported an upward trend in annual precipitation in the Sahel since the drought of the 1970s and early â80s, yet farmers have questioned improvements in conditions for agriculture, suggesting that intraseasonal dynamics play a crucial role. Using high-resolution daily precipitation data spanning 1981â2017 and focusing on agriculturally-relevant areas of the Sahel, we re-examined the extent of rainfall increase and investigated whether the increases have been accompanied by changes in two aspects of intraseasonal variability that have relevance for agriculture: rainy season duration and occurrence of prolonged dry spells during vulnerable crop growth stages. We found that annual rainfall increased across 56% of the region, but remained largely the same elsewhere. Rainy season duration increased almost exclusively in areas with upward trends in annual precipitation (23% of them). Association between annual rain and dry spell occurrence was less clear: increasing and decreasing frequencies of false starts (dry spells after first rains) and post-floral dry spells (towards the end of the season) were found to almost equal extent both in areas with positive and those with no significant trend in annual precipitation. Overall, improvements in at least two of the three intraseasonal variables (and no declines in any) were found in 10% of the region, while over a half of the area experienced declines in at least one intraseasonal variable, or no improvement in any. We conclude that rainfall conditions for agriculture have improved overall only in scattered areas across the Sahel since the 1980s, and increased annual rainfall is only weakly, if at all, associated with changes in the agriculturally-relevant intraseasonal rainfall characteristics
Planetary Boundaries: Separating Fact from Fiction. A Response to Montoya et al.
A recent article by Montoya et al. [idem, Planetary Boundaries for Biodiversity: Implausible Science, Pernicious Policies, Trends in Ecology & Evolution 33 (2018), no. 2, pp. 71-73] in Trends in Ecology and Evolution presents a vitriolic and highly opinionated critique of the planetary boundaries (PBs) framework based on a fundamental misrepresentation of the framework and a repetition of earlier ill-informed and misguided attacks on it. Herein we set the record straight and note more positive ways forward
Analytically tractable climate-carbon cycle feedbacks under 21st century anthropogenic forcing
Changes to climate-carbon cycle feedbacks may significantly affect the Earth Systemâs response to greenhouse gas emissions. These feedbacks are usually analysed from numerical output of complex and arguably opaque Earth System Models (ESMs). Here, we construct a stylized global climate-carbon cycle model, test its output against complex ESMs, and investigate the strengths of its climate-carbon cycle feedbacks analytically. The analytical expressions we obtain aid understanding of carbon-cycle feedbacks and the operation of the carbon cycle. We use our results to analytically study the relative strengths of different climate-carbon cycle feedbacks and how they may change in the future, as well as to compare different feedback formalisms. Simple models such as that developed here also provide "workbenches" for simple but mechanistically based explorations of Earth system processes, such as interactions and feedbacks between the Planetary Boundaries, that are currently too uncertain to be included in complex ESMs
- âŚ