2,571 research outputs found
hist2RNA: An Efficient Deep Learning Architecture to Predict Gene Expression from Breast Cancer Histopathology Images
Gene expression can be used to subtype breast cancer with improved prediction of risk of recurrence and treatment responsiveness over that obtained using routine immunohistochemistry (IHC). However, in the clinic, molecular profiling is primarily used for ER+ breast cancer, which is costly, tissue destructive, requires specialised platforms, and takes several weeks to obtain a result. Deep learning algorithms can effectively extract morphological patterns in digital histopathology images to predict molecular phenotypes quickly and cost-effectively. We propose a new, computationally efficient approach called hist2RNA inspired by bulk RNA sequencing techniques to predict the expression of 138 genes (incorporated from 6 commercially available molecular profiling tests), including luminal PAM50 subtype, from hematoxylin and eosin (H&E)-stained whole slide images (WSIs). The training phase involves the aggregation of extracted features for each patient from a pretrained model to predict gene expression at the patient level using annotated H&E images from The Cancer Genome Atlas (TCGA, n = 335). We demonstrate successful gene prediction on a held-out test set (n = 160, corr = 0.82 across patients, corr = 0.29 across genes) and perform exploratory analysis on an external tissue microarray (TMA) dataset (n = 498) with known IHC and survival information. Our model is able to predict gene expression and luminal PAM50 subtype (Luminal A versus Luminal B) on the TMA dataset with prognostic significance for overall survival in univariate analysis (c-index = 0.56, hazard ratio = 2.16 (95% CI 1.12–3.06), p < 5 × 10−3), and independent significance in multivariate analysis incorporating standard clinicopathological variables (c-index = 0.65, hazard ratio = 1.87 (95% CI 1.30–2.68), p < 5 × 10−3). The proposed strategy achieves superior performance while requiring less training time, resulting in less energy consumption and computational cost compared to patch-based models. Additionally, hist2RNA predicts gene expression that has potential to determine luminal molecular subtypes which correlates with overall survival, without the need for expensive molecular testing
Genotypic variation in phosphorus efficiency between wheat cultivars grown under greenhouse and field conditions
Phosphorus (P) efficiency (relative growth), which is described as the ratio of shoot dry matter or grain yield at deficient P supply to that obtained under adequate P supply, was compared in 25 winter wheat cultivars grown under greenhouse and field conditions with low and adequate P levels in a P-deficient calcareous soil. Adequate P supply resulted in significant increases in shoot dry weight and grain yield under both experimental conditions. In the greenhouse experiment, the increases in shoot dry weight under adequate P supply (80 mg kg(-1)) were from 0% (cv: C-1252) to 34% (cv: Dagdas). Under field conditions, the cultivars showed much greater variation in their response to adequate P supply (60 kg ha(-1)): the increases in shoot dry weight and grain yield with adequate P supply were between -2% (cv: Sivas-111/33) and 25% (cv: Kirac-66) for shoot dry matter production at the heading stage and between 0% (cv: Kirkpinar-79) and 76% (cv: Kate A-1) for grain yield at maturity. Almost all cultivars behaved totally different in their response to P deficiency under greenhouse and field conditions. Phosphorus efficiency ratios (relative growth) under greenhouse conditions did not correlate with the P efficiency ratios under field conditions. In general, durum wheat cultivars were found to be more P efficient compared with bread wheat cultivars. The results of this study indicated that there is wide variation in tolerance to P deficiency among wheat cultivars that can be exploited in breeding new wheat cultivars for high P deficiency tolerance. The results also demonstrated that P efficiency was expressed differently among the wheat cultivars when grown under greenhouse and field conditions and, therefore, special attention should be paid to growth conditions in screening wheat for P efficiency
Recommended from our members
The Berkeley Contact Lens Extended Wear Study. Part I : Study design and conduct.
ObjectiveThe primary aim of the Berkeley Contact Lens Extended Wear Study (CLEWS) was to test the hypotheses that extended wear of rigid gas-permeable (RGP) contact lenses with greater oxygen permeability (Dk) reduces the incidence of contact lens-associated keratopathy (CLAK) and increases the survival rate in RGP extended wear (EW). In this article we describe the clinical trial design in detail, present the results of subject recruitment and retention, and provide the baseline demographic and ocular characteristics of the CLEWS subjects, whose data will be analyzed to address the study aims in a companion article.DesignA randomized, concurrently controlled clinical trial.InterventionSubjects were fitted with day wear (DW) high-Dk RGP lenses and then adapted to EW. Subjects who adapted to EW were then randomly assigned to either high- or medium-Dk RGP lenses for 12 months of 6-nights/week EW.Main outcome measuresSlit-lamp assessment and grading of 17 possible keratopathies, measurement of refractive error and corneal curvature, and symptoms. Follow-up data were collected every 3 months.ResultsFrom 545 subjects entering the DW adaptation phase, 201 adapted to EW and were randomly assigned to medium- or high-Dk lenses for 12 months of EW. The baseline characteristics of the two study groups were similar and did not differ from the 344 DW subjects who failed to adapt to EW. The distributions of oxygen transmissibility for the two study groups were disjoint, indicating that each group received distinctly different levels of hypoxia.ConclusionsWe show that CLEWS was appropriately designed to address the study hypotheses, was conducted with regard for the safety of the subjects, and adhered to rigorous protocols designed to control for bias and ensure the integrity of study data. We establish the internal validity of between-group statistical comparisons and characterize our study population to permit informed evaluation of the applicability of our results to the contact lens-wearing population in general
The Berkeley Contact Lens Extended Wear Study. Part II : Clinical results.
ObjectiveTo describe the principal clinical outcomes associated with 12 months use of rigid gas-permeable (RGP) extended wear contact lenses and address two primary study questions: (1) does extended wear (EW) of high oxygen transmissibility (Dk/t) RGP lenses reduce the incidence of ocular complications, and (2) does the wearing of high-Dk/t lenses reduce the rate of failure to maintain 6-night RGPEW over 12 months?DesignA randomized, concurrently controlled clinical trial.InterventionSubjects who adapted to EW with high Dk (oxygen permeability) RGP lenses were randomized to either high Dk or medium-Dk RGP lenses for 12 months of 6-night EW.Main outcome measuresContact lens-associated keratopathies (CLAK), changes in refractive error and corneal curvature, and survival in EW.ResultsTwo hundred one subjects were randomized to medium or high-Dk lenses for 12 months of EW. Sixty-two percent of the subjects in each group completed 12 months of EW; however, the probability of failure was significantly greater for the medium-Dk group. Although the risk of complications was similar for the two groups, the number of CLAK events that led to termination were 16 versus 5 for the medium-Dk and high-Dk groups, respectively. This suggests that the type of adverse response or the inability to reverse an adverse event was different for the group being exposed to the lower oxygen dose.ConclusionsThe level of oxygen available to the cornea has a significant impact on maintaining successful RGP extended contact lens wear, but not on the initial onset of CLAK. The number of clinical events leading to termination was substantially higher for the medium Dk group, which suggests that corneal hypoxia is an important factor in the development of CLAK. Although overnight contact lens wear should be recommended with caution and carefully monitored for early detection of ocular complications, it appears that high-Dk RGP lenses can be a safe and effective treatment for correction of refractive error for most individuals who can adapt to EW
Identification of Acoustic Emission Sources by Pattern Recognition Techniques
Computer pattern recognition has been used to identify and separate acoustic emission (AE) signals that are similar in appearance but are due to different sources. Simulated joint specimens were tested in the laboratory in which a fatigue crack was grown from the edge of a central loading pin hole. The hardened steel loading pin produced fretting AE by its contact with the 7075 T651 aluminum plate specimens during cyclic loading. The fatigue crack produced AE due to crack growth and to crack face rubbing during load cycling. The AE signals detected at two transducers mounted on opposite sides of the loading pin hole, at 2 in. and 4 in. from the fatigue crack, were digitally recorded at a 5 MHz digitization rate. The waveform features that were extracted from these AE signals and used in the pattern recognition were derived from the frequency spectral content of the waveforms. Better than 90% separation of crack growth from crack face rubbing was achieved using frequency features of the waveforms from either transducer separately. Better than 95% separation of fretting from crack growth or crack face rubbing, separately or combined, was achieved using the ratios of the spectral energies detected at the two transducers
Towards an Efficient Finite Element Method for the Integral Fractional Laplacian on Polygonal Domains
We explore the connection between fractional order partial differential
equations in two or more spatial dimensions with boundary integral operators to
develop techniques that enable one to efficiently tackle the integral
fractional Laplacian. In particular, we develop techniques for the treatment of
the dense stiffness matrix including the computation of the entries, the
efficient assembly and storage of a sparse approximation and the efficient
solution of the resulting equations. The main idea consists of generalising
proven techniques for the treatment of boundary integral equations to general
fractional orders. Importantly, the approximation does not make any strong
assumptions on the shape of the underlying domain and does not rely on any
special structure of the matrix that could be exploited by fast transforms. We
demonstrate the flexibility and performance of this approach in a couple of
two-dimensional numerical examples
A scheme for determining vehicle routes based on Arc-based service network design
In freight transportation, less-than-truckload carriers often need to assign each vehicle a cyclic route so that drivers can come back home after a certain period of time. However, the Node-Arc model for service network design addresses decisions on each arc and does not determine routes directly, although the vehicle balancing constraint ensures that the number of outgoing vehicles equals the number of incoming vehicles at each node. How to transform the optimized service network into a set of vehicle routes remains an important problem that has not yet been studied. In this paper, we propose a three-phase scheme to address this problem. In the first stage, we present an algorithm based on the depth-first search to find all of the different cyclic routes in a service network design solution. In the second stage, we propose to prune poor cyclic routes using real-life constraints so that a collection of acceptable vehicle routes can be obtained before route assignment. Some of the pruning can also be done in the first stage to speed up the proposed algorithm. In the third stage, we formulate the problem of selecting a set of cyclic routes to cover the entire network as a weighted set covering problem. The resulting model is formulated as an integer program and solved with IBM ILOG CPLEX solver. Experimental results on benchmark instances for service network design indicate the effectiveness of the proposed scheme which gives high-quality solutions in an efficient way
The medium-term sustainability of organisational innovations in the national health service
Background: There is a growing recognition of the importance of introducing new ways of working into the UK's National Health Service (NHS) and other health systems, in order to ensure that patient care is provided as effectively and efficiently as possible. Researchers have examined the challenges of introducing new ways of working-'organisational innovations'-into complex organisations such as the NHS, and this has given rise to a much better understanding of how this takes place-and why seemingly good ideas do not always result in changes in practice. However, there has been less research on the medium-and longer-term outcomes for organisational innovations and on the question of how new ways of working, introduced by frontline clinicians and managers, are sustained and become established in day-to-day practice. Clearly, this question of sustainability is crucial if the gains in patient care that derive from organisational innovations are to be maintained, rather than lost to what the NHS Institute has called the 'improvement-evaporation effect'.
Methods: The study will involve research in four case-study sites around England, each of which was successful in sustaining its new model of service provision beyond an initial period of pilot funding for new genetics services provided by the Department of Health. Building on findings relating to the introduction and sustainability of these services already gained from an earlier study, the research will use qualitative methods-in-depth interviews, observation of key meetings, and analysis of relevant documents-to understand the longer-term challenges involved in each case and how these were surmounted. The research will provide lessons for those seeking to sustain their own organisational innovations in wide-ranging clinical areas and for those designing the systems and organisations that make up the NHS, to make them more receptive contexts for the sustainment of innovation.
Discussion: Through comparison and contrast across four sites, each involving different organisational innovations, different forms of leadership, and different organisational contexts to contend with, the findings of the study will have wide relevance. The research will produce outputs that are useful for managers and clinicians responsible for organisational innovation, policy makers and senior managers, and academics
Logarithmic correction to BH entropy as Noether charge
We consider the role of the type-A trace anomaly in static black hole
solutions to semiclassical Einstein equation in four dimensions. Via Wald's
Noether charge formalism, we compute the contribution to the entropy coming
from the anomaly induced effective action and unveil a logarithmic correction
to the Bekenstein-Hawking area law.
The corrected entropy is given by a seemingly universal formula involving the
coefficient of the type-A trace anomaly, the Euler characteristic of the
horizon and the value at the horizon of the solution to the uniformization
problem for Q-curvature. Two instances are examined in detail: Schwarzschild
and a four-dimensional massless topological black hole. We also find agreement
with the logarithmic correction due to one-loop contribution of conformal
fields in the Schwarzschild background.Comment: 14 pages, JHEP styl
Perturbation with Intrabodies Reveals That Calpain Cleavage Is Required for Degradation of Huntingtin Exon 1
Background:
Proteolytic processing of mutant huntingtin (mHtt), the protein that causes Huntington's disease (HD), is critical for mHtt toxicity and disease progression. mHtt contains several caspase and calpain cleavage sites that generate N-terminal fragments that are more toxic than full-length mHtt. Further processing is then required for the degradation of these fragments, which in turn, reduces toxicity. This unknown, secondary degradative process represents a promising therapeutic target for HD.
Methodology/Principal Findings: We have used intrabodies, intracellularly expressed antibody fragments, to gain insight into the mechanism of mutant huntingtin exon 1 (mHDx-1) clearance. Happ1, an intrabody recognizing the proline-rich region of mHDx-1, reduces the level of soluble mHDx-1 by increasing clearance. While proteasome and macroautophagy inhibitors reduce turnover of mHDx-1, Happ1 is still able to reduce mHDx-1 under these conditions, indicating Happ1-accelerated mHDx-1 clearance does not rely on these processes. In contrast, a calpain inhibitor or an inhibitor of lysosomal pH block Happ1-mediated acceleration of mHDx-1 clearance. These results suggest that mHDx-1 is cleaved by calpain, likely followed by lysosomal degradation and this process regulates the turnover rate of mHDx-1. Sequence analysis identifies amino acid (AA) 15 as a potential calpain cleavage site. Calpain cleavage of recombinant mHDx-1 in vitro yields fragments of sizes corresponding to this prediction. Moreover, when the site is blocked by binding of another intrabody, V_L12.3, turnover of soluble mHDx-1 in living cells is blocked.
Conclusions/Significance:
These results indicate that calpain-mediated removal of the 15 N-terminal AAs is required for the degradation of mHDx-1, a finding that may have therapeutic implications
- …