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Abstract—In freight transportation, less-than-truckload carriers often need to assign each vehicle a 

cyclic route so that drivers can come back home after a certain period of time. However, the Node-

Arc model for service network design addresses decisions on each arc and does not determine 

routes directly, although the vehicle balancing constraint ensures that the number of outgoing 

vehicles equals the number of incoming vehicles at each node. How to transform the optimized 

service network into a set of vehicle routes remains an important problem that has not yet been 

studied. In this paper, we propose a three-phase scheme to address this problem. In the first stage, 

we present an algorithm based on the depth-first search to find all of the different cyclic routes in a 

service network design solution. In the second stage, we propose to prune poor cyclic routes using 

real-life constraints so that a collection of acceptable vehicle routes can be obtained before route 

assignment. Some of the pruning can also be done in the first stage to speed up the proposed 

algorithm. In the third stage, we formulate the problem of selecting a set of cyclic routes to cover 

the entire network as a weighted set covering problem. The resulting model is formulated as an 

integer program and solved with IBM ILOG CPLEX solver. Experimental results on benchmark 

instances for service network design indicate the effectiveness of the proposed scheme which gives 

high-quality solutions in an efficient way. 

Keywords    Service network design, depth first serach, pruning, set covering, integer programming 

1      INTRODUCTION 

Freight transportation is fundamental to economic prosperity 
and daily life in modern society. Over the past few years, less-
than-truckload (LTL) transportation and express delivery, for 
which shipments typically weigh no more than 10,000 lbs, 
have seen significant increase in freight flows in the wake of 
online shopping (Bai et al., 2014). In order to succeed in this 
highly competitive market, LTL carriers have to offer 
consumers high-quality services at a lower price. Therefore, it 
is imperative for carriers to set up service plans so as to 
optimize the utilization of critical logistic assets (vehicles, 
warehouses, etc.) and reduce the overall cost. 

Freight transportation planning is generally carried out at 
three levels: strategic, tactical and operational (Crainic, 2000). 
At the tactical planning level, LTL carriers need to make 
decisions about a set of paths via which each commodity 
flows from its origin to the destination.  A path is a sequence 
of nodes which represent geographically distributed end-of-
line and break-bulk terminals. In addition, LTL carriers 
usually choose to consolidate shipments from different 
customers into truckloads of freight at various terminals in 
order to spread transportation costs over as many customers as 
possible. Network design could be introduced to assist the 
tactical planning, which is also called the Service Network 
Design Problem(SNDP) (Wieberneit, 2008).  
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In the SNDP, we consider an underlying network of 
geographically distributed end-of-line and break-bulk 
terminals (often cities, or regional transportation hubs). 
Break-bulk terminals are those where freight is unloaded, 
consolidated and then reloaded onto the same or different 
vehicles. Some of these terminals are connected by links 
(e.g. truck lines), over which freight flows. To meet 
customers’ demands, a carrier hauls multiple commodities 
through the network from many origin terminals to many 
destination terminals. The services are performed by a 
number of vehicles, each with a limited capacity. As each 
link is associated with a fixed cost and a variable cost, the 
carrier’s objective is to deliver these goods at minimum 
possible cost. Thus it needs to make decisions about which 
links to open and how shipments should be routed through 
the network. The selected links together with associated 
terminals comprise a service network, which is expected to 
satisfy customers’ demands at minimum total cost. The 
fixed cost represents the minimum level of resources 
needed to open a link, like capital investment for 
purchasing vehicles and employing staff, while the variable 
cost such as fuel consumption and tolls is incurred per unit 
by hauling commodities. 

The most common model for service network design is the 
Node-Arc model, of which more details are given in Section 3. 
It has two types of decision variables, namely design variables 
and flow variables. Design variables represent the number of 
logistic assets (e.g. the frequency of vehicles for carrying the 
load) on a link between two nodes. The link is also referred to 
as an arc. Flow variables indicate the amount of commodity 
flow on an arc. In other words, the Node-Arc model defines 
decision variables for each arc. As a result, the service 
network design solution addresses decisions on arcs. Fig. 1 
gives an example of an optimized service network from the 
Node-Arc formulation. Arcs represented by solid lines are 
selected to comprise the optimized network and closed arcs 
are represented by dashed lines. Note that although we 
mainly deal with the general Node-Arc model in the 
following parts of this paper, algorithms developed for the 
general Node-Arc model can be adapted to the time-space 
SNDP models. The rationale behind this is that a time-
space SNDP model (Pederson et al., 2008) can be 
transformed into a general Node-Arc model. 
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Fig. 1. A simple example of an optimized service network. 

However, it remains difficult for LTL carriers to directly 
adopt the optimized service network from the Node-Arc 
model. In practice, LTL carriers use a large number of 
vehicles to operate services and need to assign each vehicle a 
route. A vehicle route is typically a sequence of network nodes 
which includes several arcs rather than only one arc. A route 
should be feasible for a given vehicle to travel for the entire 
journey, from the first to the last node. Due to various 

restrictions, routes must often take the form of cycles so that 
drivers can come back home after a certain period of time. 
Although the vehicle balancing constraint ensures that the 
number of departing vehicles equals the number of incoming 
vehicles (Vu et al., 2013), the Node-Arc service network 
design model does not directly determine routes for vehicles. 
This is very different from the classic vehicle routing 
problem (VRP). The SNDP permits freight consolidation 
and transfers at intermediate nodes and hence 
distinguishes between a vehicle route (the list of nodes 
visited by a vehicle) and a commodity path (the list of 
nodes that a commodity flows through). A vehicle route 
can be used to service multiple commodities and a 
commodity can be delivered through a combination of 
multiple vehicles with options of transfers at intermediate 
nodes. In the classic VRP, a commodity is normally 
serviced by a single vehicle. Furthermore, a variety of other 
real-life constraints may arise when putting transport 
operations into certain contexts, such as working time 
regulations, fairness between drivers, and so on. From the 
perspective of users, it is thus of primary importance to be 
able to transform a service network design solution based on 
the Node-Arc formulation into practical routes.  

This paper aims to address this research gap. The main 
contribution is twofold. First, it introduces a new problem of 
how to generate a set of vehicle routes based on an optimized 
service network. It attempts to transform the tactical planning 
results into vehicle routes, which is valuable for operational 
planning. It is expected to promote further research on this 
important problem. Second, it provides an efficient 
decomposition strategy with three phases to determine vehicle 
routes. One huge benefit of decomposition is that it enables 
pruning poor cyclic routes prematurely so that some real-life 
constraints can be satisfied before route assignment.  

The remainder of this paper is organized as follows. In 
Section 2, we review related literature on service network 
design and crew scheduling. A detailed description of our 
research question is given in Section 3. In Section 4, we 
present an algorithm to search for all of the different cyclic 
routes in a solution network. In Section 5, we propose to prune 
poor cyclic routes before route assignment. In Section 6, we 
develop a method to cover a solution network with the cyclic 
routes. Experimental results are reported in Section 7. In 
Section 8, we give our concluding remarks. The potential 
limitations of our research and some directions for further 
study are also presented. 

2      LITERATURE REVIEW 

2.1      Service Network Design 

Service network design has been widely used to address 
tactical freight flow planning for LTL carriers. There are two 
prominent network design formulations in the scientific 
literature, the Node-Arc model and the Path-based model 
(Crainic, 2000). The Path-based model in which flow 
variables are defined on each path instead of on each arc, by 
its nature, is equivalent to the Node-Arc model where both 
design variables and flow variables are defined in terms of 
arcs. Both of the formulations can be modeled as mixed 
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integer programs. It is not practical to solve either directly 
using integer programming methodologies for real-life 
problems on a medium or large scale (Bai et al., 2010) due to 
the computational resources required. Thus research has 
focused on methodologies to obtain good quality solutions. 
Various techniques have been investigated and proposed, 
including decomposition (Costa, 2005), column generation 
(Smilowitz et al., 2003) and meta-heuristics (Crainic and Li, 
2006; Ghamlouche et al., 2004). More comprehensive reviews 
can be found in (Wieberneit, 2008). Aside from deterministic 
models, some research has been done on stochastic service 
network design (Bai et al., 2014; Thapalia, 2011). 

Recent studies on service network design have tended to 
incorporate operational issues into the two classic models. 
Vehicles are taken into consideration explicitly when 
designing service networks and a new layer called asset 
management is integrated with the traditional design layer and 
flow layer. The asset studied in most of the literature is limited 
to the vehicles that are needed for the operation of the 
transportation service, although it may also include crew 
assignments. Pedersen et al. (2008) extended the traditional 
service network design models by introducing a design 
balance constraint. The constraint requires that the number of 
arcs entering a node must be equal to that leaving a node, 
which can be interpreted there being an equal number of 
vehicles entering and leaving each terminal. Motivated by the 
need to change vehicles at borders for intermodal transport 
networks, Andersen et al. (2009) proposed a more 
comprehensive service network design model. The proposed 
model introduced synchronization of multiple fleets that cover 
services. Crainic et al. (2014) enlarged the range of asset 
management aspects included in the traditional models and 
explicitly accounted for the limited number of resources 
available at each terminal. The common highlight of these 
papers is considering vehicles explicitly in the service network 
models. Although several methods have been proposed to 
solve these models (Andersen et al., 2011; Teypaz et al., 2010), 
this remains difficult as these are NP-hard problems. This 
paper is also motivated by considering vehicles explicitly in 
the Node-Arc model, but deals with it in a different way.  

2.2      Crew Scheduling 

Another research area related to this paper is crew scheduling 
and rostering in the management of large transit systems 
(Erera et al., 2008), where a given set of trips has to be 
covered by a set of pairings and the corresponding overall cost 
is minimized. A pairing is a sequence of trips that can 
conducted by a single crew (Caprara et al., 1999). The crew 
scheduling problem is formulated as a set covering problem in 
a significant body of research (Azadeha et al., 2013; Bai et al., 
2015). A similar set covering problem is introduced into this 
paper to determine a set of cyclic routes that cover each arc in 
the Node-Arc model solution. As an NP-hard combinatorial 
optimization problem, the set covering problem has been 
extensively studied (Groiez et al., 2014). The proposed 
solutions can be divided into two classes: exact algorithms and 
heuristic algorithms (Sundar and Singh, 2012). Exact 
algorithms aim to find the optimal solution, while heuristic 
algorithms aim to find a good or near-optimal solution in a 

reasonable time. Problems which are typically encountered in 
the real world are generally too large to be solved exactly in 
an acceptable computation time. For this reason, heuristic 
algorithms such as greedy algorithms, genetic algorithms, 
simulated annealing, ant colony optimization, particle swarm 
optimization and artificial bee colony (Sundar and Singh, 2012) 
have been the focus of more and more research. For all of their 
simplicity, greedy algorithms don’t in general produce 
sufficiently good solutions due to their myopic nature. 
Although other (non-greedy) heuristic algorithms may yield 
better results, they would often require unacceptable 
computing time for a typical LTL carrier with a few thousand 
drivers and ten thousand dispatch tasks (Erera et al., 2008). 
These algorithms usually involve complicated procedures, 
such as fine tuning of parameters. The set covering problem 
can be modeled as an integer program. As a state-of-the-art 
solver for integer programming, IBM ILOG CPLEX provides 
an easier yet efficient avenue to solve the weighted set 
covering problem of small and medium sizes. In this paper, 
CPLEX is utilized as the main tool for the set covering 
problem. Of course, for practitioners who want to adopt the 
route generation scheme in this paper, this part can be replaced 
by other efficient algorithms for the set covering problem. The 
objective of this paper is not to propose a new algorithm for 
the set covering problem. 

3      PROBLEM DESCRIPTION 

3.1      Node-Arc Model 

As mentioned earlier, the most common model for service 
network design is the Node-Arc model (Crainic, 2000). 

Consider a directed graph  ,G N A  where N  is the node 

set and A  is the arc set. Let k  be a commodity in the set 

k K . Let  0k kd d   denote the quantity of k , while 

kO N  and kD N  represent its origin and destination 

respectively. Let k

ib  be the net outflow which indicates the net 

quantity of commodity k  flowing outwards at node i . Let 
fu  denote the capacity of vehicle type f F  where F  is the 

set of all transport vehicle types. 
f

ijh  is the fixed cost for each 

use of vehicle type f  on arc  ,i j A , whereas 
k

ijc  

represents the variable cost of shipping a unit of commodity k  

along arc  ,i j . There are two decision variables, denoted by 

k

ijx  and 
f

ijy  respectively. Continuous variables 
k

ijx  represents 

the flow of commodity k  on arc  ,i j A . Design variables 

f

ijy  represent the frequency of vehicle type f  on arc  ,i j  

and are discrete. The Node-Arc model can be modeled as 
follows (Bai et al., 2010).  

   , ,

min f f k k

ij ij ij ij

f F i j A k K i j A

h y c x
   

       

s.t. 
k f f

ij ij

k K f F

x u y
 

  ,  ,i j A     

http://pubsonline.informs.org/action/doSearch?text1=Caprara%2C+A&field1=Contrib
http://link.springer.com/search?facet-author=%22Shyam+Sundar%22
http://link.springer.com/search?facet-author=%22Alok+Singh%22
http://link.springer.com/search?facet-author=%22Shyam+Sundar%22
http://link.springer.com/search?facet-author=%22Alok+Singh%22
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k k k

ij ji i

j N j N

x x b
 

   , i N  , k K       

0f f

ij ji

j N j N

y y
 

   , i N  , f F    

0k

ijx  , k K  ,  ,i j A     

0f

ijy  and integer, f F  ,  ,i j A    

The net outflow k

ib  is defined as follows: 

if ,

if ,

0 otherwise.

k

k

k k

i k

d i O

b d i D

 


  



 i N  , k K           

 The objective is to minimize the sum of fixed costs and 
variable costs induced by shipping all commodities from their 
origins to destinations. Constraint (2) ensures that the total 
flow along each arc does not exceed its capacity. Constraint (3) 
is the flow balance constraint, making sure that all 
commodities are shipped from their origins to destinations. 
Constraint (4) is the design balance constraint (Pederson et al., 
2008; Vu et al., 2013), which ensures all vehicles finally 
return to their origins to get ready for next service period. 
Constraints (5) and (6) are used to guarantee the non-
negativity of decision variables and the integrity of design 
variables.  

3.2      Determining Vehicle Routes 

Once the two decision variables of the Node-Arc model have 
been assigned values, an optimized service network can be 
obtained. A very small example involving seven nodes is 
shown in Fig.1, although there are typically a large number of 
nodes for a LTL carrier. At each node, there are equal 
numbers of inbound and outbound arcs. 

The design balance constraint actually models a common 
fact that a logistic asset is associated with a specific terminal 
in a transportation network and must return there before the 
next service period. For instance, drivers in LTL businesses 
must periodically return to the terminal closest to their homes 
according to federal or labor union regulations (Crainic et al., 
2014). As a result, this constraint induces cyclic structures in 
the service network, which means that the numbers of inbound 
and outbound arcs are equal for each node.  

In most practical cases, LTL carriers need to assign each 
vehicle a route to operate services. Due to various restrictions, 
routes are often in the form of cycles so that drivers can come 
back home after a certain period of time. On the other hand, 
the cyclic routes need to be assigned in a way that fulfills the 
demands from customers. Because the flow balance constraint 
in the Node-Arc model ensures that all the commodities are 
shipped from their origin to their destination, the service 
network design solution is certain to meet all customer 
demands. As a consequence, every arc in the solution network 
should be covered by any final route assignment, otherwise, 
the assigned routes will not be sufficient to satisfy all of the 
demands. In summary, to assign each vehicle a cyclic route 
and keep services running well for carriers, we need to 

transform the optimized service network into a set of cyclic 
routes that cover all the arcs.  

In this paper, we decompose the problem into three phases. 
In the first stage, we aim to find all of the different cyclic 
routes in an optimized service network. For the example in Fig. 
1, there are four cyclic routes, which are shown in Fig. 2. To 
ascertain this, we first need to represent and store the 
optimized service network, which is a directed graph. We also 
need to propose an algorithm that can find all of the different 
cyclic routes in a given directed graph. Due to some real-life 
constraints, some of the cyclic routes may be unacceptable for 
practical applications. In view of this, we propose to prune 
poor cyclic routes in the second stage before route assignment. 
In the third stage, we aim to find a set of cyclic routes that 
cover each arc in the network. Usually there will be various 
ways to cover the network and we want to find the most cost-
effective one for LTL carriers. For instance, Fig. 3 indicates 
two ways to cover the network in Fig. 1, using either the left 
two cyclic routes or the right two in Fig. 2. Therefore, we also 
need to design metrics to measure the cost of each route, such 
as the total distance, the number of nodes and so on. And then 
we need to find a set of cyclic routes that cover the entire 
network while minimizing the total cost. 
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Fig. 2. Cyclic routes included in Fig. 1. 
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Fig. 3. Two different ways to cover Fig. 1 using cyclic routes in Fig. 2. 

Although the standard Node-Arc model does not take 
into account time related constraints explicitly, these can 
be handled implicitly through a time-space network 
(Pederson et al., 2008), which can be linearly transformed 
into a standard Node-Arc formulation. Therefore, our 
scheme is applicable for both scenarios (i.e. with and 
without time related constraints). 

3.3      SNDP versus VRP 

When discussing vehicle routes, it is natural to think about 
the well-known Vehicle Routing Problem (VRP) (Barcos et 
al., 2010; Benslimane and Benadada, 2013). To bring a 
clearer picture of the SNDP, it is worth making a 
comparison between these problems. The SNDP differs 
from the VRP in several aspects, which are discussed 
below.  

First and foremost, the presence of break-bulk 
terminals, which perform the consolidation or 
transshipment function (Crainic, 2000), makes the SNDP 
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distinctly different. In the SNDP, commodities shipped by 
different vehicles are gathered at the break-bulk terminal 
to be sorted, grouped and reloaded. From the point of view 
of commodities, break-bulk terminals are neither origins 
nor destinations, but rather those nodes through which 
commodities flow before reaching the destination 
terminals. By contrast, the nodes in most VRPs are either 
origins or destinations, and sometimes both in some of its 
variants, such as the pickup and delivery problem with a 
many-to-many structure (Berbeglia et al., 2007; Cordeau 
et al., 2008). Each node is visited exactly once by exactly 
one vehicle (Laporte, 1992). Thus, the SNDP is more 
suitable for LTL transport because commodity 
transshipment and consolidation can be readily modeled. 
However, the SNDP has its own downsides, one of which is 
a lack of explicit representation of the vehicle route 
constraints, especially for the Node-Arc SNDP model. This 
disadvantage motivates our work of determining vehicle 
routes for LTL carriers based on the solution obtained 
from the Arc-based SNDP model.  

Second, the VRP is in general based on a complete 
graph (or digraph). In this graph, every pair of distinct 
nodes is connected by a link over which freight flows. 
However, this assumption does not hold for the underlying 
network in the SNDP. Typically, only some of the 
terminals are connected to each other therein.  

Third, the traditional VRP has a constant cost on each 
arc, which is normally associated with the travel distance 
or time. Although each arc also has a corresponding cost in 
the SNDP, the cost varies with the amount of the 
commodities flowing on the arc. Accordingly, the decision 
variables of the SNDP involve the flow of a commodity on 
an arc, whereas those of the traditional VRP do not. The 
rationale behind this can be explained as follows: In the 
SNDP, due to the consolidation process, what a vehicle 
carries may change at the break-bulk terminal. Without 
this decision variable, variations in the types and amounts 
of the commodity it hauls are unknown. Even if the arc 
selection is finalized, there will be a wide range of 
possibilities to consider in terms of the commodity and we 
still cannot determine the most cost-effective commodity 
flow. In the traditional VRP, as each node has a clear 
demand, a finalized arc selection will bring out a definite 
commodity flow.  

Lastly, the majority of VRP variants are characterized 
by having one or more depots where vehicle routes start 
and end (Laporte, 1992; Cordeau and Laporte, 2003). 
Unlike the VRP, the general SNDP is not under such a 
constraint. Even in the SNDP with a design balance 
constraint, which induces cyclic structures, the resulting 
cycles usually do not have a common depot. One may ask, 
if this is the case, then where are the vehicles based? This 
question actually falls within the area of empty balancing 
(Crainic, 2000), another significant problem for the SNDP. 
However, if this problem is not the centre of attention, it is 
typically assumed that vehicles are well repositioned 
beforehand so that there are sufficient supplies of vehicles 
at terminals of the underlying network. The problem 
considered here makes this assumption. 

4      FINDING ALL THE DIFFERENT CYCLIC ROUTES 

4.1      Representation of Networks 

As mentioned in Section 3, in order to find all of the different 
cyclic routes, we first need to represent and store the 
optimized service network. An optimized service network is a 
directed graph (Ahuja et al., 1993), enabling us to utilize ideas 
from graph theory. 

Either an adjacency matrix or adjacency list could be 
adopted to represent and store a directed graph (Ahuja et al., 
1993). Although an adjacency matrix has the merit of 
simplicity, the space requirement can be prohibitive (Weiss, 
2013) if the graph is large and sparse, which is often the case 
with the domain under investigation. A better representation 
for a sparse graph is an adjacency list, in which each node 
stores a list of all of its adjacent nodes. Given a limited 
number of exiting arcs, as is usually the case in practice, the 
space requirement is linear in the size of the graph. In addition, 
an adjacency list makes it possible to get the list of adjacent 
vertices for a given node within constant time. Regarding the 
implementation of adjacency list in C++, we could choose 
either linked lists or arrays since it makes little difference to 
the performance of our scheme. Note that in Part 2 of Section 
4, we use linked list to explain the proposed algorithm. 

4.2      Searching for All the Different Cyclic Routes 

In order to find all of the different cyclic routes in a certain 
solution network, we propose to first find all of the cyclic 
routes starting from a given node. Note that a cyclic route in 
the first stage of finding all of the different cyclic routes 
does not have any repetition of nodes, which is referred to 
as a directed cycle (Ahuja et al., 1993) in graph theory, 
because we want to ensure that our scheme is also 
applicable for time-space based service networks in which 
each node is a copy of a physical node at a particular time 
point. Any directed walk (Ahuja et al., 1993) whose last node 
is the same as its starting node can be obtained by a 
combination of cyclic routes. For example, the directed walk 
1->6->7->1->6->5->4(->1) in Fig. 1 is not seen as a cyclic 
route because node 1 and 6 have been visited more than once. 
In fact, it is the combination of two cyclic routes, 1->6->7(->1) 
and 1->6->5->4(->1). For convenience, we do not 
distinguish between such directed walks and cyclic routes 
in the second stage of pruning and the third stage of 
covering a network. These are all referred to as cyclic 
routes, but allow repeated nodes. 

To detect a cyclic routes starting from a given node in a 
directed graph, we need to perform a traversal over the entire 
graph. As an effective graph traversal algorithm, depth-first 
search (Tarjan, 1972) is adopted. In the context of searching 
cyclic routes, depth-first search will proceed from a particular 
root node as far as it can until this root node or a dead end is 
reached. Then depth-first search will backtrack to the last node 
from which a different path could have been taken. The search 
continues with this node until it has to backtrack again. 
Continuing in this fashion, all of the cyclic routes starting 
from this root node will be detected eventually.  
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In the following step, conceptually we could simply apply 
the same method to all of the other nodes to obtain all of the 
cyclic routes in this network. However, such a procedure 
would produce a large number of repeated cyclic routes which 
contains the same nodes placed in the same relative order. The 
only differences among these routes are their starting nodes. In 
Fig. 1, such routes as 1->6->7(->1) and 6->7->1(->6) occur 
multiple times (3 in this case). They are essentially the same 
and hence we need to remove redundancy. To achieve this, 
normalization of all the routes is needed to facilitate the 
detection of redundancy. For example, we could rearrange the 
nodes of a cyclic route so that the node ranking the lowest is 
set as the starting one. Thus routes like 1->6->7 and 6->7->1 
are normalized as a common route 1->6->7. There is no doubt 
the whole process involves huge amounts of repetitive work. 
Such an intuitively plausible method would lead to prohibitive 
consumption of memory and computational time in practice. 
Inspired by the normalization process above, we prove a 
proposition.  

Proposition 1. Suppose a set S which comprises all of the 

cyclic routes starting from a node v has already been found. 

When searching for cyclic routes starting with a node different 
from v , if v is included in a newly found cyclic route r , 

then r S .  

Proof. Assume we are searching for cyclic routes starting 

from a node 1w ,which is different from v . A newly found 

cyclic route r including node v can be represented as 

  1 2 1 1h hw w w v w w                 

We can rearrange these nodes in (8) and get a cyclic route 

named equir , which starts with v , as shown in (9). 

  1 1 2h hv w w w w v                 

As the set S comprises all of the cyclic routes starting 

from v ,we have equir S . Routes r and equir have the same 

nodes placed in the same relative order, so they are equivalent 

and represent the same cyclic route. Thus we have equir r . 

Combining equir S and equir r , we obtain the result that r S . 

This completes the proof the proposition.□ 

Based on Proposition 1, a better method is proposed. When 
searching for cyclic routes starting from a node, depth-first 
search will check whether the node being reached has already 
been used as a starting node before. If so, depth-first search 
will bypass the node and backtrack earlier than normal. If not, 
the search procedure will keep going normally. Adding the 
evaluation of this condition into depth-first search ensures that 
no cyclic route would be searched twice. Searching time is 
thus reduced significantly. After the method of finding all the 
cyclic routes with a certain starting node is applied to all the 
nodes, all the cyclic routes generated are unique and the final 
set contains no duplicate route. Therefore, the cumbersome 
and time-consuming process of removing redundancy can be 
avoided. 

In respect of implementation, we need to keep a record of 
all nodes that has been used as starting nodes for the purpose 
of evaluating the condition proposed above. An equivalent yet 
easier alternative is to number the nodes. We then search for 
cyclic routes in the order that the node with a lower index will 
be used as a starting node earlier. When exploring a cyclic 
route, if we reach a node with a lower index than the current 
starting node then abort the route immediately. Regarding the 
implementation of depth-first search, a recursive function was 
adopted. The most important part of doing depth-first search is 
to ensure that the algorithm does not run ad infinitum. To 
achieve that in C++, we keep track of the nodes which have 
already been visited by marking them.  

The pseudo code for searching for all of different cyclic 
routes is shown in Fig. 4. Assume we have an optimized 
service networkT . It is represented by an adjacency list and 
implemented with linked lists. V is the node set of this 

network. A Boolean array visited  is used to keep track of 

whether each node has been visited or not. 

 ,FindDiffCyclesFromANode T v is a function defined to 

search for all of the different cyclic routes starting from a 
node v . A newly found cyclic route is different from any 

previous one. Lines starting with “//” are comments.  

Algorithm 1: Searching for all of different cyclic routes 

input: a service networkT , the node setV , an adjacent node 

adjnode of a given node v , a Boolean array visited . 

Begin 

1:  number all of the nodes in V so that each has an index; 

2:  for all nodes v V in ascending order of index do 
//mark all nodes as unvisited 

3:     memset( visited , False, sizeof( visited )); 
//mark current starting node as visited 

4:       Truevisited v  ; 

//call predefined recursive function by value 

5:      ,FindDiffCyclesFromANode T v ; 

6:  end for all nodes 
      //declare function prototype 

7:   network ,intvoid FindDiffCyclesFromANode T v  

8:      { define a pointer p pointing to an adjacent node of v ; 

9:         while p is not null do 

10:            if  p adjnode is current starting node then 

11:               a cyclic route is found; 

12:            else if   visited p adjnode is False then 

13:               if  p adjnode  (index of v ) then 

14:                  {  visited p adjnode =True; 

                           //recursively call function 

15:              ,FindDiffCyclesFromANode T p adjnode ; 

16:                       visited p adjnode = False;} 

17:            make p point to next adjacent node of v ; 

18:        end while} 

end 
Fig. 4. Pseudo code for searching for all of different cyclic routes. 
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5      PRUNING OF POOR CYCLIC ROUTES 

When allocating vehicle routes, LTL carriers are faced with 
many real-life restrictions, some of which must not be violated. 
For instance, working time regulations for drivers in the 
European Union require that the daily driving time between 
the end of one daily rest period and the beginning of the 
following daily rest period should not exceed 9 hours when a 
vehicle is manned by one driver (Goel and Gruhn, 2006). LTL 
carriers are monitored and a violation of the legislation would 
be severely fined (Rancourt et al., 2012). Similar examples 
include delivery services with time windows (Kok et al., 2010; 
Spoorendonk and Desaulniers, 2010). The total driving time 
during a journey is to a great extent determined by the length 
of a cyclic route. Therefore, the presence of such hard 
constraints is very likely to make some of the cyclic routes 
generated in Section 4 unacceptable in practice. Motivated by 
this, we propose to prune poor cyclic routes before 
determining vehicle routes to cover the entire network. In this 
way, we can possibly eliminate some issues for practical 
applications before route assignment and select from a 
collection of acceptable cyclic routes for the next stage. 

Applying hard constraints to prune poor cyclic routes can 
be done either during the generation of cyclic routes in the 
first stage or as an intermediate stage after the first stage. Take 
drivers’ working hours as an example. In the first stage, we 
can abort the search for a certain cyclic route prematurely 
when it already contains too many arcs to satisfy the 
prescribed constraint of daily driving time. This pruning can 
be achieved by adding a condition evaluating process after 
Step 13 in Algorithm 1. The condition is whether or not the 
accumulated driving hours along the arcs already included in 
the vehicle route exceed the time limit. The pruning strategy 
will help reduce the total search time and speed up Algorithm 
1 in Fig. 4.  

Pruning as an intermediate stage after the first stage would 
have the advantage of knowing what other cycles have been 
generated already before pruning. Suppose we have found two 
cyclic routes, namely A->B->C->G(->A) and C->D->E->F(-
>C), in an optimized service network, as shown in Fig 5. They 
have a node ‘C’ in common and the whole figure is like ‘8’ in 
shape. In the case where either route is relatively short, it 
would be more efficient for LTL carriers to assign both cyclic 
routes to the same vehicle compared with using two vehicles. 
Thus we can combine these two cyclic routes to make a big 
and efficient one, that is, A->B->C->D->E->F->C->G(->A). 
A combination of poor cyclic routes will be used as a whole 
for the third stage instead of separate ones. This approach can 
be seen as another way of pruning in a broad sense because it 
reduces the number of cyclic routes for the third stage.  

A C

B

G

E

D

F
 

Fig. 5. Two cyclic routes in the shape of ‘8’. 

A good pruning depends on the precise details of relevant 
restrictions imposed on a certain LTL carrier. Considering this, 
we intend to give some general principles for pruning instead 

of a specific pruning strategy. Unacceptable cyclic routes need 
to be well-defined before pruning. Otherwise, we could just 
heavily penalize poor cyclic routes by defining cost metrics in 
the third stage (see Section 6). Pruning too aggressively may 
create an infeasible problem for the third stage. Let’s get back 
to the example above. Due to the restrictions on drivers’ 
working hours, long cyclic routes could be pruned even if they 
are the only ones which cover certain consignments. Then the 
third stage will never be able to cover each arc of the service 
network. In practice, customers’ demands come first and a 
LTL carrier will probably keep the poor cyclic route to 
guarantee a certain level of service. One possible way of 
satisfying the restriction is to have multiple drivers on one 
vehicle. The other drivers may have a break while one driver 
is driving (Goel and Gruhn, 2006). Therefore, Pruning can be 
done on the condition that it will not create an infeasible 
problem for the third stage. 

6      COVERING A SERVICE NETWORK  

As mentioned in Section 3, we need to select a set of cyclic 
routes from a collection of acceptable cyclic routes generated 
in Section 4 and 5. The selected cyclic routes should not only 
minimize the total cost but cover each arc in the solution 
network. Before that, the cost of each cyclic route should be 
defined first. 

According to various requirements from different LTL 
carriers, metrics could be designed flexibly to measure the 
cost of each route. If a LTL carrier cares more about the 
distance, it could assign a value measuring the distance for 
each route. Then the objective is to keep the sum of values for 
each selected route to the minimum. This is common since 
longer total distance usually means more cost for a LTL 
carrier. Note that the route penalty here can also be a complex, 
nonlinear function of the distance or the travel time, which 
does not add further complexity of the set covering model. 
Other metrics such as the number of nodes may also be 
designed to suit different needs. For the purpose of testing our 
scheme, we designed three different metrics in Section 7. In 
this paper, we assume that each cyclic route has a single 
associated cost. 

The problem can then be described as follows. There are 
three inputs. The first one is the complete set of arcs in a given 
solution network. The second one is a set of acceptable cyclic 
routes, each comprised of these arcs. In addition, each cyclic 
route has a cost. The objective is to select a subset of cyclic 
routes that minimizes the total cost as well as covering each 
arc in the solution network. 

Furthermore, the problem can be formulated as a weighted 
set covering problem using the following mathematical 

notations. Let  1 2= , , , mE e e e be the complete set of arcs. 

Each ground element in this set represents an arc in a given 
service network design solution. Let R represent the collection 

of all the acceptable cyclic routes. Each entry  1 2, , , nr r r r in 

set R denotes a cyclic route and is comprised of arcs in E , 

thus we have 1 2, , , nr r r E . Let
rp be the cost of cyclic route 

r R . The goal is to find a subset of R that has the minimum 

http://pubsonline.informs.org/action/doSearch?text1=Rancourt%2C+Marie-eve&field1=Contrib
http://pubsonline.informs.org/action/doSearch?text1=Kok%2C+A+L&field1=Contrib
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total cost to cover all of the elements of set E . Thus the 
weighted set covering model can be given as follows: 

min r r

r R

z p


                                      

. .s t  

1l

r r

r R

z 


 , 1,2, ,l m                         

The decision variable here is rz , whose value indicates 

whether a cyclic route r is included or not. It is defined as 

follows: 

1

0
r

r R is chosen
z

otherwise


 


                        

The indicator l

r shows whether an arc le is covered in a cyclic 

route r , as defined below: 

1

0

ll

r

r R covers e E

otherwise


 
 


                  

In the case where the cost of each route is equal, we 

set 1rp  for all possible values of r . 

The resulting model is an binary (integer) program since 
each element of the decision vector is a 0/1 variable. As a 
state-of-the-art software package for integer programming, 
IBM ILOG CPLEX solver proves to be particularly powerful 
and appealing. In view of this, we utilize CPLEX to solve the 
problem. The computational results in Section 7 indicate its 
effectiveness. 

7      COMPUTATIONAL RESULTS AND ANALYSIS 

In order to evaluate the performance of the scheme we 
propose, experiments have been carried out based on the 
service network design solutions from Bai et al. (2012). Their 
solutions were obtained as results of experimental tests on a 
set of benchmark instances for service network design. Those 
instances were first generated by Crainic et al. (2000) and are 
identified with the letter C. In addition, each instance is 
characterized by five parameters. The first three are the 
number of nodes, arcs and commodities respectively. The 
fourth parameter signifies whether the ratio of fixed costs over 
variable costs is high (F) or low (V), while the last one 
indicates whether the instance is tightly (T) or loosely (L) 
capacitated. Herein we selected solutions to the first eight 
instances as the input of our experiment, shown in Table I. For 
each instance, the numbers of nodes and arcs in its solution are 
shown in the column entitled ‘Size of Solution Networks’.  

As the first stage of our scheme, the algorithm for finding 
all of the different cyclic routes was implemented in C++. 
Unless otherwise indicated, all of the computing was 
conducted on a laptop computer with a 2.13GHz Intel Core i3 
CPU and 2 Gigabyte of RAM, under a 32-Bit operating 
system. The total number of cyclic routes for each solution 
network, as well as the corresponding searching time, is 
indicated in Table I. For solution networks with no more than 
71 arcs, it is clear that the algorithm could efficiently find all 
cyclic routes, whose number amounts to 167,000, within 18 
seconds.  

TABLE I. Computational results of generating all cyclic routes 

Instance 

Size of Solution 

Networks No. of Cyclic 

Routes 

Searching 

Time/s No. of 

Nodes 

No. of 

Arcs 

C20,230,200,V,L 20 57 8,040 3.535 

C20,230,200,F,L 20 46 968 1.857 

C20,230,200,V,T 20 56 6,254 2.649 

C20,230,200,F,T 20 61 17,335 3.263 

C20,300,200,V,L 20 66 114,856 8.968 

C20,300,200,F,L 20 62 38,235 4.316 

C20,300,200,V,T 20 71 167,128 17.388 

C20,300,200,F,T 20 63 42,736 3.548 

Furthermore, we can see that the number of cyclic routes 
grows dramatically as the number of arcs increases. In order to 
visualize the rate of change, Fig. 6 has been plotted. Despite 
possible small fluctuations, Fig. 6 depicts an overall trend of 
roughly exponential growth in both the number of cyclic 
routes and searching time with the increase of the number of 
arcs. As a consequence, this poses a great challenge to large 
scale solution networks in terms of memory and computing 
time. For instance, the number of cyclic routes climbs to 
2,005,251 for instance named ‘C30,520,100,V,L’, whose 
solution network consists of 30 nodes and 91 arcs, with 
searching time going up to 251.316 seconds. Although our 
method is still effective for a problem on such scale, the time 
consumption may be unacceptable from the perspective of 
practical applications. 
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Fig. 6. The rate of change for searching time and No. of cyclic routes 

In order to measure the cost of each cyclic route, three 
metrics were designed in our experiment. In the case of ‘equal 
cost’, the cost of each cyclic route is equal. For convenience, 
the values of all of the costs are set to 1. The second metric 
derives its name ‘counting cost’ from counting the number of 
arcs in a cyclic route. The costs for the third metric, ‘fixed 
cost’ are obtained by adding together the cost of each arc 
included in a cyclic route. The cost of an arc here refers to the 
value of ‘fixed_cost’ for this arc, which can be extracted from 
the benchmark dataset described above. As an example, the 
fixed cost for each arc in the solution network of instance 
C20,230,200,V,L is shown in Table II. This solution network 
consists of 57 arcs. Please note that the node representation of 
an arc in this table, let’s say, (i->j) corresponds to an arc from 
node (i+1) to node (j+1) in the benchmark dataset. The 
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original value of ‘fixed_cost’ for an arc is identified as ‘old’ in 
the table. To simplify future calculation, we multiplied the 
‘old’ value by 0.01 and then truncated the resulting number by 
discarding the decimal part. The ‘new’ value for fixed cost 
was used for subsequent optimization instead of the ‘old’ 
value.  

As stated in Section 5, good pruning depends on 
complete information from carriers and is better done case 
by case. Since such information is not included in the test 
dataset, we did pruning according to the cost of each route 
in the experiment. Overall, pruning was performed based 
on the principle that the routes whose costs were close to 
the highest cost among all of the routes were less likely to 
be in the optimal set. Hence we had adequate reason to 
eliminate them without harming the third stage but we 
cannot guarantee it for all cases.  

For the counting cost, we chose as the pruning criterion 
the rule that any route whose cost value was greater than 
14 was to be pruned. There were other alternative values 
possible and we chose the value 14 for demonstration 

purposes only. Note that each cyclic route theoretically has 
20 arcs at most because every instance in the experiment 
consists of 20 nodes. Regarding the fixed cost, cost tables 
like Table II are not the same for different instances. 
Consequently, the instances range in the costs of routes 
from relatively low to high. To deal with this, we chose for 
each instance a value out of three options, namely 85, 135 
and 185. These three values corresponded to the case of 
low, medium and high costs respectively, with a constant 
difference between the consecutive numbers. The pruning 
criterion for the case of low costs was then defined as 
removing those routes whose cost values are greater than 
85. In the case of medium and high costs, the pruning 
criteria were described in a similar fashion. With respect 
to the equal cost, it stands to reason that a good solution 
tends to include as many arcs as possible in one route. In 
this way, all of the arcs could be covered with fewer routes 
and thus a lower cost is induced. For this reason, we chose 
to prune the routes which contained fewer than 11 arcs. 
The results of pruning under three different conditions are 
shown in Table III. 

TABLE II. The fixed cost for each arc in the solution network of instance C20,230,200,V,L 

Arc 
Fixed Cost 

Arc 
Fixed Cost 

Arc 
Fixed Cost 

Arc 
Fixed Cost 

old new old new old new old new 

0->2 1149 11 5->10 416 4 10->5 294 2 16->9 734 7 

0->10 318 3 5->11 367 3 10->8 245 2 16->19 1369 13 

0->13 367 3 5->16 1931 19 10->18 392 3 17->2 440 4 

1->7 1491 14 6->0 1760 17 11->0 1638 16 17->7 245 2 

1->19 1100 11 6->9 440 4 11->3 831 8 17->18 318 3 

2->3 245 2 7->15 440 4 11->9 856 8 17->19 1320 13 

2->4 538 5 7->16 489 4 11->17 978 9 18->1 1345 13 

2->15 343 3 8->5 660 6 12->8 929 9 18->11 1296 12 

3->2 343 3 8->12 367 3 12->11 660 6 19->0 294 2 

3->4 294 2 8->14 612 6 13->5 294 2 19->1 1003 10 

3->8 1907 19 8->19 1100 11 13->6 783 7 19->10 1198 11 

3->13 367 3 9->5 783 7 14->3 269 2 19->17 807 8 

4->11 563 5 9->12 563 5 14->8 1565 15    

4->17 880 8 9->14 1076 10 15->10 1467 14    

5->6 318 3 10->3 1785 17 15->17 2102 21    

TABLE III. Results of pruning under three different conditions 

Instance 

Equal Cost Counting Cost Fixed Cost 

Pruning 

Criterion (No. 

of Arcs <) 

No. of 

Pruned 

Routes 

Percentage of 

Pruned 

Routes/% 

Pruning 

Criterion 

(Cost Value >) 

No. of 

Pruned 

Routes 

Percentage of 

Pruned 

Routes/% 

Pruning 

Criterion 

(Cost Value >) 

No. of 

Pruned 

Routes 

Percentage  

of Pruned 

Routes/% 

C20,230,200,V,L 11 1,304 16.22 14 2,743 34.11 135 813 10.11 

C20,230,200,F,L 11 347 35.85 14 120 12.40 185 580 59.92 

C20,230,200,V,T 11 1,715 27.42 14 782 12.50 85 2,346 37.51 

C20,230,200,F,T 11 3,149 18.17 14 4,584 26.44 185 6,272 36.18 

C20,300,200,V,L 11 6,411 5.58 14 61,644 53.67 85 26,898 23.42 

C20,300,200,F,L 11 4,360 11.40 14 14,743 38.56 135 25,783 67.43 

C20,300,200,V,T 11 11,960 7.16 14 76,927 46.03 85 6,204 3.71 

C20,300,200,F,T 11 4,782 11.19 14 16,171 37.84 135 20,702 48.44 
 

It can be seen from Table III that each instance 
contains poor cyclic routes that can be pruned. We shall 
see later that more than 80 percent of this pruning does 
not cause any change of the final solutions in the third 
stage. With an appropriate pruning criterion, Table III 
also indicates that a large proportion of routes can be 

pruned for most instances. In the case of fixed cost, the 
average percentage of pruned routes is more than 35 
percent, whereas the average percentages in the cases of 
counting cost and equal cost are 32 and 16 percent 
respectively. We can expect a higher average percentage 
for the latter two cases if the pruning criterion is tailor-
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made for each instance. Pruning in this fashion helps to 
greatly reduce the memory usage and the risk of out-of-
memory, because there are usually huge amounts of 
information about the cyclic routes that need to be stored 
as the inputs for the third stage. Besides, a lower-level 
memory requirement enables the proposed algorithm to 
deal with larger sized instances. Pruning is further 
discussed in the results of the third stage. 

Now we come to the third stage of our scheme, namely 
selecting a set of cyclic routes, from all of the cyclic routes, 
to cover the entire network. The weighted set covering 
model established in Section 6 was solved with IBM ILOG 
CPLEX V12.6.1. The input data of this model was created 
based on the arcs and cyclic routes obtained in the first 
and second stages respectively. The optimization results 
for three different kinds of costs and corresponding 
running times are reported in Table IV.  

 As can be seen from Table IV, CPLEX could find 
optimal solutions to all of the eight instances within 68 
seconds. In particular, the running time for each instance 
reduced noticeably after pruning. More importantly, more 
than 80 percent of this pruning does not cause any change 
of the final solutions. There are only four cells where the 
final solution failed to attain the optimal value or the same 
set of optimal routes after pruning. In fact, this failure is a 

direct result of overly aggressive pruning. Take the 
instance ‘C20,230,200,F,T’ as an example. Its optimal 
solution includes a cyclic route whose cost value is 15. In 
the case of counting cost, any route whose cost value is 
greater than 14 will be pruned according to the pruning 
criterion. Hence this cyclic route will be pruned before the 
third stage. If the pruning criterion were set to be 15 or 
higher, the final solution would still attain the same set of 
optimal routes after pruning. Conversely, sometimes 
pruning was done too cautiously. Take the instance 
‘C20,300,200,V,T’ with fixed cost as an example. It is 
shown in Table III that only 3.71 percent of the routes 
were pruned. If the pruning criterion were set to be 60, the 
number of pruned routes would increase to 72,067 and the 
percentage would rise to 43.12. This result would be more 
desirable since the optimal solution still remained 
unchanged. It is hard to define an appropriate pruning 
criterion suitable for all cases. Part of the problem here is, 
of course, that we utilized only example values for the 
pruning here, whereas in real situations users will 
probably have more information about what is likely to 
happen and what is acceptable and could use this to tune 
the pruning. In order to achieve a desirable result, the 
pruning criterion should probably be tailored for each 
instance, using knowledge about the problem to solve, or 
investigating alternatives.  

TABLE IV. Optimization results of selecting cyclic routes under three different conditions 

Instance 

Equal Cost Counting Cost Fixed Cost 

Optimal  

Value of 

Objective 

Function 

Time/s Optimal  

Value of 

Objective 

Function 

Time/s Optimal  

Value of 

Objective 

Function 

Time/s 

Before 

Pruning 

After 

Pruning 

Before 

Pruning 

After 

Pruning 

Before 

Pruning 

After 

Pruning 

C20,230,200,V,L 4 4.92 2.98 57 2.95 0.92 437 5.47 1.81 

C20,230,200,F,L 5 0.85 * 46 0.66 0.08 795 0.92 0.38 

C20,230,200,V,T 6 2.93 ** 56 1.76 0.86 358 3.89 1.12 

C20,230,200,F,T 6 6.67 3.89 61 3.12 ** 775 4.50 1.25 

C20,300,200,V,L 4 59.47 38.39 66 67.09 ** 327 30.85 16.58 

C20,300,200,F,L 5 15.09 7.96 62 11.61 6.07 678 9.43 4.35 

C20,300,200,V,T 6 64.92 39.22 71 66.08 32.84 301 48.26 21.70 

C20,300,200,F,T 5 13.01 8.28 63 15.33 6.46 603 10.60 5.07 

*: The objective function failed to attain the optimal value after pruning. 
**: The optimal objective value was attained but the actual solution (i.e. the set of optimal routes) was different. 

To explain these optimization results in further detail, we 
think about instance C20,230,200,V,L as an example. As 
stated above, its solution network consists of 57 arcs. In the 
case of equal cost, the optimal set of cyclic routes is displayed 
in Table V. There are 4 cyclic routes selected to cover all of 
the 57 arcs. Consequently, the optimum of the objective 
function should be 4, which is exactly the corresponding 
‘Optimal Value of Objective Function’ in Table IV. In the 
context of counting cost, the optimal set includes 13 cyclic 
routes, as shown in Table VI. Since the cost of a route refers to 
the number of arcs in it, the total cost comes to 57. The sum 
explains where the value of 57 in Table IV comes from. In 
respect of fixed cost, 13 cyclic routes depicted in Table VII 
comprises the optimal set. As the fixed cost of each arc can be 
looked up in Table II, we can calculate the sum of each route’s 
cost. That is how we get 437 for the ‘Optimal Value of 
Objective Function’ in Table IV. 

Summarizing all of the computational results above, we 
can see that the proposed scheme could efficiently find the 
optimal set of cyclic routes to cover a given service network 
including no more than 71 arcs within 86 seconds. This result 
indicates not only the effectiveness of the proposed scheme, 
but also its efficiency to transform the optimized service 
network into a set of cyclic routes. 

As is known, the service network design problem is NP-
hard and there is no efficient solution procedure for large scale 
networks. We have to admit that when the scale of the service 
network design solution grows much larger, our scheme is 
confronted with a similar problem. Its performance becomes 
poor due to unacceptable time consumption and memory 
requirements. In other words, without modification, our 
scheme is not currently applicable for large scale problems 
either. 
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TABLE V. The optimal set of cyclic routes for instance C20,230,200,V,L 
with equal cost 

Index 

of a 

Cyclic 

Route 

Node Representation No. of Arcs 
Equal 

Cost 

1511 
0->13->5->6->9->14->8->19->10 

->3->2->15->17->18->11->0 
15 1 

2538 
0->10->5->16->19->17->2->4->11 

->9->12->8->14->3->13->6->0 
16 1 

5745 
0->2->3->8->5->11->17->7->15 

->10->18->1->19->0 
13 1 

7337 
10->8->12->11->3->4->17->19->1 

->7->16->9->5->10 
13 1 

TABLE VI. The optimal set of cyclic routes for instance C20,230,200,V,L 
with counting cost 

Index of 

a Cyclic 

Route 

Node Representation No. of Arcs Counting Cost 

1768 0->13->5->6->0 4 4 

1896 0->10->18->11->0 4 4 

4117 
0->2->15->10->5->11->3 

->13->6->9->12->8->19->0 
13 13 

6658 2->4->17->2 3 3 

7042 2->3->2 2 2 

7296 10->8->12->11->17->19->10 6 6 

7789 10->3->8->5->10 4 4 

7921 1->19->17->18->1 4 4 

7924 1->7->16->19->1 4 4 

8000 7->15->17->7 3 3 

8023 3->4->11->9->14->3 5 5 

8026 8->14->8 2 2 

8038 5->16->9->5 3 3 

TABLE VII. The optimal set of cyclic routes for instance C20,230,200,V,L 
with fixed cost 

Index 

of a 

Cyclic 

Route 

Node Representation 
No. of 

Arcs 

Fixed 

Cost 

1230 0->13->5->11->0 4 24 

2964 0->10->3->8->19->0 5 52 

4789 
0->2->4->17->18->1->7->15->10 

->8->12->11->9->14->3->13->6->0 
17 130 

6196 2->15->17->2 3 28 

7042 2->3->2 2 5 

7043 10->18->11->17->19->10 5 48 

7547 10->5->10 2 6 

7922 1->19->1 2 21 

7978 7->16->19->17->7 4 27 

8025 3->4->11->3 3 15 

8026 8->14->8 2 21 

8030 8->5->16->9->12->8 5 46 

8039 5->6->9->5 3 14 

8      CONCLUSIONS AND FUTURE DIRECTIONS 

To assign a cyclic route to each vehicle and keep services 
running well for LTL carriers, we propose to transform the 
solution network of the Arc-based SNDP model into a set of 
cyclic routes that cover all arcs in the network. The solution 
strategy is decomposed into three stages. The first stage aims 
to find all of the different cyclic routes in a solution network 
and we present an algorithm based on depth-first search to 
solve it. One great advantage of the decomposition strategy is 
that it enables us to prune poor cyclic routes before route 
assignment. Pruning can also be done in the first stage to make 

the proposed algorithm faster. The third stage is to select a set 
of cyclic routes to cover the entire network. It is formulated as 
a weighted set covering problem. The resulting model as an 
integer program is solved with CPLEX solver and optimal 
solutions are obtained in reasonable time. Experimental results 
have shown that the proposed scheme is quite effective with 
regard to solution quality and computational efficiency. 

As we have mentioned, one limitation of the proposed 
strategy is that it is not applicable to larger problems. This is 
not surprising if we consider the fact that generally neither 
service network design problems nor other large scale NP-
hard integer programs can be solved to optimality within 
reasonable time. Future progress in network design and integer 
programming is expected to help improve the performance of 
our scheme on medium and large scale problems. Various 
heuristic optimisations in the choice of cycles to use, or 
column generation approaches are obvious candidates. One 
aim of this paper is to encourage other researchers to consider 
this interesting problem. 

We take vehicle balancing constraints into account in this 
paper. As a matter of fact, there are many other issues for LTL 
carriers to consider when setting up transport service plans. 
For instance, working time regulations are of extraordinary 
importance. LTL carriers must organize the work of drivers in 
a way that drivers are able to comply with the respective 
regulations. Therefore it will be of value to introduce time 
constraints into the problem for practical transport planning in 
the future. This three-phase scheme is ideal for this, since 
many cycle-length regulations can be considered in the route 
generation and cost function design. 
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