
1

A Scheme for Determining Vehicle Routes

Based on Arc-based Service Network Design

Xiaoping Jiang

School of Computer Science, University of Nottingham Ningbo China, Ningbo 315100, China,

e-mail: Xiaoping.Jiang@nottingham.edu.cn

Ruibin Bai

School of Computer Science, University of Nottingham Ningbo China, Ningbo 315100, China,

e-mail: ruibin.bai@nottingham.edu.cn

Jason Atkin

School of Computer Science, University of Nottingham, Nottingham NG8 1BB, UK, e-mail: jaa@cs.nott.ac.uk

Graham Kendall

School of Computer Science, University of Nottingham Malaysia Campus, e-mail: Graham.Kendall@nottingham.edu.my

School of Computer Science, University of Nottingham, Nottingham NG8 1BB, UK, e-mail: graham.kendall@nottingham.ac.uk

Abstract—In freight transportation, less-than-truckload carriers often need to assign each vehicle a

cyclic route so that drivers can come back home after a certain period of time. However, the Node-

Arc model for service network design addresses decisions on each arc and does not determine

routes directly, although the vehicle balancing constraint ensures that the number of outgoing

vehicles equals the number of incoming vehicles at each node. How to transform the optimized

service network into a set of vehicle routes remains an important problem that has not yet been

studied. In this paper, we propose a three-phase scheme to address this problem. In the first stage,

we present an algorithm based on the depth-first search to find all of the different cyclic routes in a

service network design solution. In the second stage, we propose to prune poor cyclic routes using

real-life constraints so that a collection of acceptable vehicle routes can be obtained before route

assignment. Some of the pruning can also be done in the first stage to speed up the proposed

algorithm. In the third stage, we formulate the problem of selecting a set of cyclic routes to cover

the entire network as a weighted set covering problem. The resulting model is formulated as an

integer program and solved with IBM ILOG CPLEX solver. Experimental results on benchmark

instances for service network design indicate the effectiveness of the proposed scheme which gives

high-quality solutions in an efficient way.

Keywords Service network design, depth first serach, pruning, set covering, integer programming

1 INTRODUCTION

Freight transportation is fundamental to economic prosperity
and daily life in modern society. Over the past few years, less-
than-truckload (LTL) transportation and express delivery, for
which shipments typically weigh no more than 10,000 lbs,
have seen significant increase in freight flows in the wake of
online shopping (Bai et al., 2014). In order to succeed in this
highly competitive market, LTL carriers have to offer
consumers high-quality services at a lower price. Therefore, it
is imperative for carriers to set up service plans so as to
optimize the utilization of critical logistic assets (vehicles,
warehouses, etc.) and reduce the overall cost.

Freight transportation planning is generally carried out at
three levels: strategic, tactical and operational (Crainic, 2000).
At the tactical planning level, LTL carriers need to make
decisions about a set of paths via which each commodity
flows from its origin to the destination. A path is a sequence
of nodes which represent geographically distributed end-of-
line and break-bulk terminals. In addition, LTL carriers
usually choose to consolidate shipments from different
customers into truckloads of freight at various terminals in
order to spread transportation costs over as many customers as
possible. Network design could be introduced to assist the
tactical planning, which is also called the Service Network
Design Problem(SNDP) (Wieberneit, 2008).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Nottingham ePrints

https://core.ac.uk/display/76973878?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

In the SNDP, we consider an underlying network of
geographically distributed end-of-line and break-bulk
terminals (often cities, or regional transportation hubs).
Break-bulk terminals are those where freight is unloaded,
consolidated and then reloaded onto the same or different
vehicles. Some of these terminals are connected by links
(e.g. truck lines), over which freight flows. To meet
customers’ demands, a carrier hauls multiple commodities
through the network from many origin terminals to many
destination terminals. The services are performed by a
number of vehicles, each with a limited capacity. As each
link is associated with a fixed cost and a variable cost, the
carrier’s objective is to deliver these goods at minimum
possible cost. Thus it needs to make decisions about which
links to open and how shipments should be routed through
the network. The selected links together with associated
terminals comprise a service network, which is expected to
satisfy customers’ demands at minimum total cost. The
fixed cost represents the minimum level of resources
needed to open a link, like capital investment for
purchasing vehicles and employing staff, while the variable
cost such as fuel consumption and tolls is incurred per unit
by hauling commodities.

The most common model for service network design is the
Node-Arc model, of which more details are given in Section 3.
It has two types of decision variables, namely design variables
and flow variables. Design variables represent the number of
logistic assets (e.g. the frequency of vehicles for carrying the
load) on a link between two nodes. The link is also referred to
as an arc. Flow variables indicate the amount of commodity
flow on an arc. In other words, the Node-Arc model defines
decision variables for each arc. As a result, the service
network design solution addresses decisions on arcs. Fig. 1
gives an example of an optimized service network from the
Node-Arc formulation. Arcs represented by solid lines are
selected to comprise the optimized network and closed arcs
are represented by dashed lines. Note that although we
mainly deal with the general Node-Arc model in the
following parts of this paper, algorithms developed for the
general Node-Arc model can be adapted to the time-space
SNDP models. The rationale behind this is that a time-
space SNDP model (Pederson et al., 2008) can be
transformed into a general Node-Arc model.

1

4 6

7

5

32

Fig. 1. A simple example of an optimized service network.

However, it remains difficult for LTL carriers to directly
adopt the optimized service network from the Node-Arc
model. In practice, LTL carriers use a large number of
vehicles to operate services and need to assign each vehicle a
route. A vehicle route is typically a sequence of network nodes
which includes several arcs rather than only one arc. A route
should be feasible for a given vehicle to travel for the entire
journey, from the first to the last node. Due to various

restrictions, routes must often take the form of cycles so that
drivers can come back home after a certain period of time.
Although the vehicle balancing constraint ensures that the
number of departing vehicles equals the number of incoming
vehicles (Vu et al., 2013), the Node-Arc service network
design model does not directly determine routes for vehicles.
This is very different from the classic vehicle routing
problem (VRP). The SNDP permits freight consolidation
and transfers at intermediate nodes and hence
distinguishes between a vehicle route (the list of nodes
visited by a vehicle) and a commodity path (the list of
nodes that a commodity flows through). A vehicle route
can be used to service multiple commodities and a
commodity can be delivered through a combination of
multiple vehicles with options of transfers at intermediate
nodes. In the classic VRP, a commodity is normally
serviced by a single vehicle. Furthermore, a variety of other
real-life constraints may arise when putting transport
operations into certain contexts, such as working time
regulations, fairness between drivers, and so on. From the
perspective of users, it is thus of primary importance to be
able to transform a service network design solution based on
the Node-Arc formulation into practical routes.

This paper aims to address this research gap. The main
contribution is twofold. First, it introduces a new problem of
how to generate a set of vehicle routes based on an optimized
service network. It attempts to transform the tactical planning
results into vehicle routes, which is valuable for operational
planning. It is expected to promote further research on this
important problem. Second, it provides an efficient
decomposition strategy with three phases to determine vehicle
routes. One huge benefit of decomposition is that it enables
pruning poor cyclic routes prematurely so that some real-life
constraints can be satisfied before route assignment.

The remainder of this paper is organized as follows. In
Section 2, we review related literature on service network
design and crew scheduling. A detailed description of our
research question is given in Section 3. In Section 4, we
present an algorithm to search for all of the different cyclic
routes in a solution network. In Section 5, we propose to prune
poor cyclic routes before route assignment. In Section 6, we
develop a method to cover a solution network with the cyclic
routes. Experimental results are reported in Section 7. In
Section 8, we give our concluding remarks. The potential
limitations of our research and some directions for further
study are also presented.

2 LITERATURE REVIEW

2.1 Service Network Design

Service network design has been widely used to address
tactical freight flow planning for LTL carriers. There are two
prominent network design formulations in the scientific
literature, the Node-Arc model and the Path-based model
(Crainic, 2000). The Path-based model in which flow
variables are defined on each path instead of on each arc, by
its nature, is equivalent to the Node-Arc model where both
design variables and flow variables are defined in terms of
arcs. Both of the formulations can be modeled as mixed

3

integer programs. It is not practical to solve either directly
using integer programming methodologies for real-life
problems on a medium or large scale (Bai et al., 2010) due to
the computational resources required. Thus research has
focused on methodologies to obtain good quality solutions.
Various techniques have been investigated and proposed,
including decomposition (Costa, 2005), column generation
(Smilowitz et al., 2003) and meta-heuristics (Crainic and Li,
2006; Ghamlouche et al., 2004). More comprehensive reviews
can be found in (Wieberneit, 2008). Aside from deterministic
models, some research has been done on stochastic service
network design (Bai et al., 2014; Thapalia, 2011).

Recent studies on service network design have tended to
incorporate operational issues into the two classic models.
Vehicles are taken into consideration explicitly when
designing service networks and a new layer called asset
management is integrated with the traditional design layer and
flow layer. The asset studied in most of the literature is limited
to the vehicles that are needed for the operation of the
transportation service, although it may also include crew
assignments. Pedersen et al. (2008) extended the traditional
service network design models by introducing a design
balance constraint. The constraint requires that the number of
arcs entering a node must be equal to that leaving a node,
which can be interpreted there being an equal number of
vehicles entering and leaving each terminal. Motivated by the
need to change vehicles at borders for intermodal transport
networks, Andersen et al. (2009) proposed a more
comprehensive service network design model. The proposed
model introduced synchronization of multiple fleets that cover
services. Crainic et al. (2014) enlarged the range of asset
management aspects included in the traditional models and
explicitly accounted for the limited number of resources
available at each terminal. The common highlight of these
papers is considering vehicles explicitly in the service network
models. Although several methods have been proposed to
solve these models (Andersen et al., 2011; Teypaz et al., 2010),
this remains difficult as these are NP-hard problems. This
paper is also motivated by considering vehicles explicitly in
the Node-Arc model, but deals with it in a different way.

2.2 Crew Scheduling

Another research area related to this paper is crew scheduling
and rostering in the management of large transit systems
(Erera et al., 2008), where a given set of trips has to be
covered by a set of pairings and the corresponding overall cost
is minimized. A pairing is a sequence of trips that can
conducted by a single crew (Caprara et al., 1999). The crew
scheduling problem is formulated as a set covering problem in
a significant body of research (Azadeha et al., 2013; Bai et al.,
2015). A similar set covering problem is introduced into this
paper to determine a set of cyclic routes that cover each arc in
the Node-Arc model solution. As an NP-hard combinatorial
optimization problem, the set covering problem has been
extensively studied (Groiez et al., 2014). The proposed
solutions can be divided into two classes: exact algorithms and
heuristic algorithms (Sundar and Singh, 2012). Exact
algorithms aim to find the optimal solution, while heuristic
algorithms aim to find a good or near-optimal solution in a

reasonable time. Problems which are typically encountered in
the real world are generally too large to be solved exactly in
an acceptable computation time. For this reason, heuristic
algorithms such as greedy algorithms, genetic algorithms,
simulated annealing, ant colony optimization, particle swarm
optimization and artificial bee colony (Sundar and Singh, 2012)
have been the focus of more and more research. For all of their
simplicity, greedy algorithms don’t in general produce
sufficiently good solutions due to their myopic nature.
Although other (non-greedy) heuristic algorithms may yield
better results, they would often require unacceptable
computing time for a typical LTL carrier with a few thousand
drivers and ten thousand dispatch tasks (Erera et al., 2008).
These algorithms usually involve complicated procedures,
such as fine tuning of parameters. The set covering problem
can be modeled as an integer program. As a state-of-the-art
solver for integer programming, IBM ILOG CPLEX provides
an easier yet efficient avenue to solve the weighted set
covering problem of small and medium sizes. In this paper,
CPLEX is utilized as the main tool for the set covering
problem. Of course, for practitioners who want to adopt the
route generation scheme in this paper, this part can be replaced
by other efficient algorithms for the set covering problem. The
objective of this paper is not to propose a new algorithm for
the set covering problem.

3 PROBLEM DESCRIPTION

3.1 Node-Arc Model

As mentioned earlier, the most common model for service
network design is the Node-Arc model (Crainic, 2000).

Consider a directed graph  ,G N A where N is the node

set and A is the arc set. Let k be a commodity in the set

k K . Let  0k kd d  denote the quantity of k , while

kO N and kD N represent its origin and destination

respectively. Let k

ib be the net outflow which indicates the net

quantity of commodity k flowing outwards at node i . Let
fu denote the capacity of vehicle type f F where F is the

set of all transport vehicle types.
f

ijh is the fixed cost for each

use of vehicle type f on arc  ,i j A , whereas
k

ijc

represents the variable cost of shipping a unit of commodity k

along arc  ,i j . There are two decision variables, denoted by

k

ijx and
f

ijy respectively. Continuous variables
k

ijx represents

the flow of commodity k on arc  ,i j A . Design variables

f

ijy represent the frequency of vehicle type f on arc  ,i j

and are discrete. The Node-Arc model can be modeled as
follows (Bai et al., 2010).

   , ,

min f f k k

ij ij ij ij

f F i j A k K i j A

h y c x
   

    

s.t.
k f f

ij ij

k K f F

x u y
 

  ,  ,i j A  

http://pubsonline.informs.org/action/doSearch?text1=Caprara%2C+A&field1=Contrib
http://link.springer.com/search?facet-author=%22Shyam+Sundar%22
http://link.springer.com/search?facet-author=%22Alok+Singh%22
http://link.springer.com/search?facet-author=%22Shyam+Sundar%22
http://link.springer.com/search?facet-author=%22Alok+Singh%22

4

k k k

ij ji i

j N j N

x x b
 

   , i N  , k K  

0f f

ij ji

j N j N

y y
 

   , i N  , f F  

0k

ijx  , k K  ,  ,i j A  

0f

ijy  and integer, f F  ,  ,i j A  

The net outflow k

ib is defined as follows:

if ,

if ,

0 otherwise.

k

k

k k

i k

d i O

b d i D

 


  



 i N  , k K  

 The objective is to minimize the sum of fixed costs and
variable costs induced by shipping all commodities from their
origins to destinations. Constraint (2) ensures that the total
flow along each arc does not exceed its capacity. Constraint (3)
is the flow balance constraint, making sure that all
commodities are shipped from their origins to destinations.
Constraint (4) is the design balance constraint (Pederson et al.,
2008; Vu et al., 2013), which ensures all vehicles finally
return to their origins to get ready for next service period.
Constraints (5) and (6) are used to guarantee the non-
negativity of decision variables and the integrity of design
variables.

3.2 Determining Vehicle Routes

Once the two decision variables of the Node-Arc model have
been assigned values, an optimized service network can be
obtained. A very small example involving seven nodes is
shown in Fig.1, although there are typically a large number of
nodes for a LTL carrier. At each node, there are equal
numbers of inbound and outbound arcs.

The design balance constraint actually models a common
fact that a logistic asset is associated with a specific terminal
in a transportation network and must return there before the
next service period. For instance, drivers in LTL businesses
must periodically return to the terminal closest to their homes
according to federal or labor union regulations (Crainic et al.,
2014). As a result, this constraint induces cyclic structures in
the service network, which means that the numbers of inbound
and outbound arcs are equal for each node.

In most practical cases, LTL carriers need to assign each
vehicle a route to operate services. Due to various restrictions,
routes are often in the form of cycles so that drivers can come
back home after a certain period of time. On the other hand,
the cyclic routes need to be assigned in a way that fulfills the
demands from customers. Because the flow balance constraint
in the Node-Arc model ensures that all the commodities are
shipped from their origin to their destination, the service
network design solution is certain to meet all customer
demands. As a consequence, every arc in the solution network
should be covered by any final route assignment, otherwise,
the assigned routes will not be sufficient to satisfy all of the
demands. In summary, to assign each vehicle a cyclic route
and keep services running well for carriers, we need to

transform the optimized service network into a set of cyclic
routes that cover all the arcs.

In this paper, we decompose the problem into three phases.
In the first stage, we aim to find all of the different cyclic
routes in an optimized service network. For the example in Fig.
1, there are four cyclic routes, which are shown in Fig. 2. To
ascertain this, we first need to represent and store the
optimized service network, which is a directed graph. We also
need to propose an algorithm that can find all of the different
cyclic routes in a given directed graph. Due to some real-life
constraints, some of the cyclic routes may be unacceptable for
practical applications. In view of this, we propose to prune
poor cyclic routes in the second stage before route assignment.
In the third stage, we aim to find a set of cyclic routes that
cover each arc in the network. Usually there will be various
ways to cover the network and we want to find the most cost-
effective one for LTL carriers. For instance, Fig. 3 indicates
two ways to cover the network in Fig. 1, using either the left
two cyclic routes or the right two in Fig. 2. Therefore, we also
need to design metrics to measure the cost of each route, such
as the total distance, the number of nodes and so on. And then
we need to find a set of cyclic routes that cover the entire
network while minimizing the total cost.

1

4 65

32

1

4 65
1

6

7

1

6

7

32

Fig. 2. Cyclic routes included in Fig. 1.

1

4 65

32

7

1

6

7

32

4 5

Fig. 3. Two different ways to cover Fig. 1 using cyclic routes in Fig. 2.

Although the standard Node-Arc model does not take
into account time related constraints explicitly, these can
be handled implicitly through a time-space network
(Pederson et al., 2008), which can be linearly transformed
into a standard Node-Arc formulation. Therefore, our
scheme is applicable for both scenarios (i.e. with and
without time related constraints).

3.3 SNDP versus VRP

When discussing vehicle routes, it is natural to think about
the well-known Vehicle Routing Problem (VRP) (Barcos et
al., 2010; Benslimane and Benadada, 2013). To bring a
clearer picture of the SNDP, it is worth making a
comparison between these problems. The SNDP differs
from the VRP in several aspects, which are discussed
below.

First and foremost, the presence of break-bulk
terminals, which perform the consolidation or
transshipment function (Crainic, 2000), makes the SNDP

5

distinctly different. In the SNDP, commodities shipped by
different vehicles are gathered at the break-bulk terminal
to be sorted, grouped and reloaded. From the point of view
of commodities, break-bulk terminals are neither origins
nor destinations, but rather those nodes through which
commodities flow before reaching the destination
terminals. By contrast, the nodes in most VRPs are either
origins or destinations, and sometimes both in some of its
variants, such as the pickup and delivery problem with a
many-to-many structure (Berbeglia et al., 2007; Cordeau
et al., 2008). Each node is visited exactly once by exactly
one vehicle (Laporte, 1992). Thus, the SNDP is more
suitable for LTL transport because commodity
transshipment and consolidation can be readily modeled.
However, the SNDP has its own downsides, one of which is
a lack of explicit representation of the vehicle route
constraints, especially for the Node-Arc SNDP model. This
disadvantage motivates our work of determining vehicle
routes for LTL carriers based on the solution obtained
from the Arc-based SNDP model.

Second, the VRP is in general based on a complete
graph (or digraph). In this graph, every pair of distinct
nodes is connected by a link over which freight flows.
However, this assumption does not hold for the underlying
network in the SNDP. Typically, only some of the
terminals are connected to each other therein.

Third, the traditional VRP has a constant cost on each
arc, which is normally associated with the travel distance
or time. Although each arc also has a corresponding cost in
the SNDP, the cost varies with the amount of the
commodities flowing on the arc. Accordingly, the decision
variables of the SNDP involve the flow of a commodity on
an arc, whereas those of the traditional VRP do not. The
rationale behind this can be explained as follows: In the
SNDP, due to the consolidation process, what a vehicle
carries may change at the break-bulk terminal. Without
this decision variable, variations in the types and amounts
of the commodity it hauls are unknown. Even if the arc
selection is finalized, there will be a wide range of
possibilities to consider in terms of the commodity and we
still cannot determine the most cost-effective commodity
flow. In the traditional VRP, as each node has a clear
demand, a finalized arc selection will bring out a definite
commodity flow.

Lastly, the majority of VRP variants are characterized
by having one or more depots where vehicle routes start
and end (Laporte, 1992; Cordeau and Laporte, 2003).
Unlike the VRP, the general SNDP is not under such a
constraint. Even in the SNDP with a design balance
constraint, which induces cyclic structures, the resulting
cycles usually do not have a common depot. One may ask,
if this is the case, then where are the vehicles based? This
question actually falls within the area of empty balancing
(Crainic, 2000), another significant problem for the SNDP.
However, if this problem is not the centre of attention, it is
typically assumed that vehicles are well repositioned
beforehand so that there are sufficient supplies of vehicles
at terminals of the underlying network. The problem
considered here makes this assumption.

4 FINDING ALL THE DIFFERENT CYCLIC ROUTES

4.1 Representation of Networks

As mentioned in Section 3, in order to find all of the different
cyclic routes, we first need to represent and store the
optimized service network. An optimized service network is a
directed graph (Ahuja et al., 1993), enabling us to utilize ideas
from graph theory.

Either an adjacency matrix or adjacency list could be
adopted to represent and store a directed graph (Ahuja et al.,
1993). Although an adjacency matrix has the merit of
simplicity, the space requirement can be prohibitive (Weiss,
2013) if the graph is large and sparse, which is often the case
with the domain under investigation. A better representation
for a sparse graph is an adjacency list, in which each node
stores a list of all of its adjacent nodes. Given a limited
number of exiting arcs, as is usually the case in practice, the
space requirement is linear in the size of the graph. In addition,
an adjacency list makes it possible to get the list of adjacent
vertices for a given node within constant time. Regarding the
implementation of adjacency list in C++, we could choose
either linked lists or arrays since it makes little difference to
the performance of our scheme. Note that in Part 2 of Section
4, we use linked list to explain the proposed algorithm.

4.2 Searching for All the Different Cyclic Routes

In order to find all of the different cyclic routes in a certain
solution network, we propose to first find all of the cyclic
routes starting from a given node. Note that a cyclic route in
the first stage of finding all of the different cyclic routes
does not have any repetition of nodes, which is referred to
as a directed cycle (Ahuja et al., 1993) in graph theory,
because we want to ensure that our scheme is also
applicable for time-space based service networks in which
each node is a copy of a physical node at a particular time
point. Any directed walk (Ahuja et al., 1993) whose last node
is the same as its starting node can be obtained by a
combination of cyclic routes. For example, the directed walk
1->6->7->1->6->5->4(->1) in Fig. 1 is not seen as a cyclic
route because node 1 and 6 have been visited more than once.
In fact, it is the combination of two cyclic routes, 1->6->7(->1)
and 1->6->5->4(->1). For convenience, we do not
distinguish between such directed walks and cyclic routes
in the second stage of pruning and the third stage of
covering a network. These are all referred to as cyclic
routes, but allow repeated nodes.

To detect a cyclic routes starting from a given node in a
directed graph, we need to perform a traversal over the entire
graph. As an effective graph traversal algorithm, depth-first
search (Tarjan, 1972) is adopted. In the context of searching
cyclic routes, depth-first search will proceed from a particular
root node as far as it can until this root node or a dead end is
reached. Then depth-first search will backtrack to the last node
from which a different path could have been taken. The search
continues with this node until it has to backtrack again.
Continuing in this fashion, all of the cyclic routes starting
from this root node will be detected eventually.

6

In the following step, conceptually we could simply apply
the same method to all of the other nodes to obtain all of the
cyclic routes in this network. However, such a procedure
would produce a large number of repeated cyclic routes which
contains the same nodes placed in the same relative order. The
only differences among these routes are their starting nodes. In
Fig. 1, such routes as 1->6->7(->1) and 6->7->1(->6) occur
multiple times (3 in this case). They are essentially the same
and hence we need to remove redundancy. To achieve this,
normalization of all the routes is needed to facilitate the
detection of redundancy. For example, we could rearrange the
nodes of a cyclic route so that the node ranking the lowest is
set as the starting one. Thus routes like 1->6->7 and 6->7->1
are normalized as a common route 1->6->7. There is no doubt
the whole process involves huge amounts of repetitive work.
Such an intuitively plausible method would lead to prohibitive
consumption of memory and computational time in practice.
Inspired by the normalization process above, we prove a
proposition.

Proposition 1. Suppose a set S which comprises all of the

cyclic routes starting from a node v has already been found.

When searching for cyclic routes starting with a node different
from v , if v is included in a newly found cyclic route r ,

then r S .

Proof. Assume we are searching for cyclic routes starting

from a node 1w ,which is different from v . A newly found

cyclic route r including node v can be represented as

  1 2 1 1h hw w w v w w       

We can rearrange these nodes in (8) and get a cyclic route

named equir , which starts with v , as shown in (9).

  1 1 2h hv w w w w v       

As the set S comprises all of the cyclic routes starting

from v ,we have equir S . Routes r and equir have the same

nodes placed in the same relative order, so they are equivalent

and represent the same cyclic route. Thus we have equir r .

Combining equir S and equir r , we obtain the result that r S .

This completes the proof the proposition.□

Based on Proposition 1, a better method is proposed. When
searching for cyclic routes starting from a node, depth-first
search will check whether the node being reached has already
been used as a starting node before. If so, depth-first search
will bypass the node and backtrack earlier than normal. If not,
the search procedure will keep going normally. Adding the
evaluation of this condition into depth-first search ensures that
no cyclic route would be searched twice. Searching time is
thus reduced significantly. After the method of finding all the
cyclic routes with a certain starting node is applied to all the
nodes, all the cyclic routes generated are unique and the final
set contains no duplicate route. Therefore, the cumbersome
and time-consuming process of removing redundancy can be
avoided.

In respect of implementation, we need to keep a record of
all nodes that has been used as starting nodes for the purpose
of evaluating the condition proposed above. An equivalent yet
easier alternative is to number the nodes. We then search for
cyclic routes in the order that the node with a lower index will
be used as a starting node earlier. When exploring a cyclic
route, if we reach a node with a lower index than the current
starting node then abort the route immediately. Regarding the
implementation of depth-first search, a recursive function was
adopted. The most important part of doing depth-first search is
to ensure that the algorithm does not run ad infinitum. To
achieve that in C++, we keep track of the nodes which have
already been visited by marking them.

The pseudo code for searching for all of different cyclic
routes is shown in Fig. 4. Assume we have an optimized
service networkT . It is represented by an adjacency list and
implemented with linked lists. V is the node set of this

network. A Boolean array visited is used to keep track of

whether each node has been visited or not.

 ,FindDiffCyclesFromANode T v is a function defined to

search for all of the different cyclic routes starting from a
node v . A newly found cyclic route is different from any

previous one. Lines starting with “//” are comments.

Algorithm 1: Searching for all of different cyclic routes

input: a service networkT , the node setV , an adjacent node

adjnode of a given node v , a Boolean array visited .

Begin

1: number all of the nodes in V so that each has an index;

2: for all nodes v V in ascending order of index do
//mark all nodes as unvisited

3: memset(visited , False, sizeof(visited));
//mark current starting node as visited

4:   Truevisited v  ;

//call predefined recursive function by value

5:  ,FindDiffCyclesFromANode T v ;

6: end for all nodes
 //declare function prototype

7:  network ,intvoid FindDiffCyclesFromANode T v

8: { define a pointer p pointing to an adjacent node of v ;

9: while p is not null do

10: if  p adjnode is current starting node then

11: a cyclic route is found;

12: else if   visited p adjnode is False then

13: if  p adjnode  (index of v) then

14: {  visited p adjnode =True;

 //recursively call function

15:  ,FindDiffCyclesFromANode T p adjnode ;

16:  visited p adjnode = False;}

17: make p point to next adjacent node of v ;

18: end while}

end
Fig. 4. Pseudo code for searching for all of different cyclic routes.

7

5 PRUNING OF POOR CYCLIC ROUTES

When allocating vehicle routes, LTL carriers are faced with
many real-life restrictions, some of which must not be violated.
For instance, working time regulations for drivers in the
European Union require that the daily driving time between
the end of one daily rest period and the beginning of the
following daily rest period should not exceed 9 hours when a
vehicle is manned by one driver (Goel and Gruhn, 2006). LTL
carriers are monitored and a violation of the legislation would
be severely fined (Rancourt et al., 2012). Similar examples
include delivery services with time windows (Kok et al., 2010;
Spoorendonk and Desaulniers, 2010). The total driving time
during a journey is to a great extent determined by the length
of a cyclic route. Therefore, the presence of such hard
constraints is very likely to make some of the cyclic routes
generated in Section 4 unacceptable in practice. Motivated by
this, we propose to prune poor cyclic routes before
determining vehicle routes to cover the entire network. In this
way, we can possibly eliminate some issues for practical
applications before route assignment and select from a
collection of acceptable cyclic routes for the next stage.

Applying hard constraints to prune poor cyclic routes can
be done either during the generation of cyclic routes in the
first stage or as an intermediate stage after the first stage. Take
drivers’ working hours as an example. In the first stage, we
can abort the search for a certain cyclic route prematurely
when it already contains too many arcs to satisfy the
prescribed constraint of daily driving time. This pruning can
be achieved by adding a condition evaluating process after
Step 13 in Algorithm 1. The condition is whether or not the
accumulated driving hours along the arcs already included in
the vehicle route exceed the time limit. The pruning strategy
will help reduce the total search time and speed up Algorithm
1 in Fig. 4.

Pruning as an intermediate stage after the first stage would
have the advantage of knowing what other cycles have been
generated already before pruning. Suppose we have found two
cyclic routes, namely A->B->C->G(->A) and C->D->E->F(-
>C), in an optimized service network, as shown in Fig 5. They
have a node ‘C’ in common and the whole figure is like ‘8’ in
shape. In the case where either route is relatively short, it
would be more efficient for LTL carriers to assign both cyclic
routes to the same vehicle compared with using two vehicles.
Thus we can combine these two cyclic routes to make a big
and efficient one, that is, A->B->C->D->E->F->C->G(->A).
A combination of poor cyclic routes will be used as a whole
for the third stage instead of separate ones. This approach can
be seen as another way of pruning in a broad sense because it
reduces the number of cyclic routes for the third stage.

A C

B

G

E

D

F

Fig. 5. Two cyclic routes in the shape of ‘8’.

A good pruning depends on the precise details of relevant
restrictions imposed on a certain LTL carrier. Considering this,
we intend to give some general principles for pruning instead

of a specific pruning strategy. Unacceptable cyclic routes need
to be well-defined before pruning. Otherwise, we could just
heavily penalize poor cyclic routes by defining cost metrics in
the third stage (see Section 6). Pruning too aggressively may
create an infeasible problem for the third stage. Let’s get back
to the example above. Due to the restrictions on drivers’
working hours, long cyclic routes could be pruned even if they
are the only ones which cover certain consignments. Then the
third stage will never be able to cover each arc of the service
network. In practice, customers’ demands come first and a
LTL carrier will probably keep the poor cyclic route to
guarantee a certain level of service. One possible way of
satisfying the restriction is to have multiple drivers on one
vehicle. The other drivers may have a break while one driver
is driving (Goel and Gruhn, 2006). Therefore, Pruning can be
done on the condition that it will not create an infeasible
problem for the third stage.

6 COVERING A SERVICE NETWORK

As mentioned in Section 3, we need to select a set of cyclic
routes from a collection of acceptable cyclic routes generated
in Section 4 and 5. The selected cyclic routes should not only
minimize the total cost but cover each arc in the solution
network. Before that, the cost of each cyclic route should be
defined first.

According to various requirements from different LTL
carriers, metrics could be designed flexibly to measure the
cost of each route. If a LTL carrier cares more about the
distance, it could assign a value measuring the distance for
each route. Then the objective is to keep the sum of values for
each selected route to the minimum. This is common since
longer total distance usually means more cost for a LTL
carrier. Note that the route penalty here can also be a complex,
nonlinear function of the distance or the travel time, which
does not add further complexity of the set covering model.
Other metrics such as the number of nodes may also be
designed to suit different needs. For the purpose of testing our
scheme, we designed three different metrics in Section 7. In
this paper, we assume that each cyclic route has a single
associated cost.

The problem can then be described as follows. There are
three inputs. The first one is the complete set of arcs in a given
solution network. The second one is a set of acceptable cyclic
routes, each comprised of these arcs. In addition, each cyclic
route has a cost. The objective is to select a subset of cyclic
routes that minimizes the total cost as well as covering each
arc in the solution network.

Furthermore, the problem can be formulated as a weighted
set covering problem using the following mathematical

notations. Let  1 2= , , , mE e e e be the complete set of arcs.

Each ground element in this set represents an arc in a given
service network design solution. Let R represent the collection

of all the acceptable cyclic routes. Each entry  1 2, , , nr r r r in

set R denotes a cyclic route and is comprised of arcs in E ,

thus we have 1 2, , , nr r r E . Let
rp be the cost of cyclic route

r R . The goal is to find a subset of R that has the minimum

http://pubsonline.informs.org/action/doSearch?text1=Rancourt%2C+Marie-eve&field1=Contrib
http://pubsonline.informs.org/action/doSearch?text1=Kok%2C+A+L&field1=Contrib

8

total cost to cover all of the elements of set E . Thus the
weighted set covering model can be given as follows:

min r r

r R

z p


 

. .s t

1l

r r

r R

z 


 , 1,2, ,l m  

The decision variable here is rz , whose value indicates

whether a cyclic route r is included or not. It is defined as

follows:

1

0
r

r R is chosen
z

otherwise


 


 

The indicator l

r shows whether an arc le is covered in a cyclic

route r , as defined below:

1

0

ll

r

r R covers e E

otherwise


 
 


 

In the case where the cost of each route is equal, we

set 1rp  for all possible values of r .

The resulting model is an binary (integer) program since
each element of the decision vector is a 0/1 variable. As a
state-of-the-art software package for integer programming,
IBM ILOG CPLEX solver proves to be particularly powerful
and appealing. In view of this, we utilize CPLEX to solve the
problem. The computational results in Section 7 indicate its
effectiveness.

7 COMPUTATIONAL RESULTS AND ANALYSIS

In order to evaluate the performance of the scheme we
propose, experiments have been carried out based on the
service network design solutions from Bai et al. (2012). Their
solutions were obtained as results of experimental tests on a
set of benchmark instances for service network design. Those
instances were first generated by Crainic et al. (2000) and are
identified with the letter C. In addition, each instance is
characterized by five parameters. The first three are the
number of nodes, arcs and commodities respectively. The
fourth parameter signifies whether the ratio of fixed costs over
variable costs is high (F) or low (V), while the last one
indicates whether the instance is tightly (T) or loosely (L)
capacitated. Herein we selected solutions to the first eight
instances as the input of our experiment, shown in Table I. For
each instance, the numbers of nodes and arcs in its solution are
shown in the column entitled ‘Size of Solution Networks’.

As the first stage of our scheme, the algorithm for finding
all of the different cyclic routes was implemented in C++.
Unless otherwise indicated, all of the computing was
conducted on a laptop computer with a 2.13GHz Intel Core i3
CPU and 2 Gigabyte of RAM, under a 32-Bit operating
system. The total number of cyclic routes for each solution
network, as well as the corresponding searching time, is
indicated in Table I. For solution networks with no more than
71 arcs, it is clear that the algorithm could efficiently find all
cyclic routes, whose number amounts to 167,000, within 18
seconds.

TABLE I. Computational results of generating all cyclic routes

Instance

Size of Solution

Networks No. of Cyclic

Routes

Searching

Time/s No. of

Nodes

No. of

Arcs

C20,230,200,V,L 20 57 8,040 3.535

C20,230,200,F,L 20 46 968 1.857

C20,230,200,V,T 20 56 6,254 2.649

C20,230,200,F,T 20 61 17,335 3.263

C20,300,200,V,L 20 66 114,856 8.968

C20,300,200,F,L 20 62 38,235 4.316

C20,300,200,V,T 20 71 167,128 17.388

C20,300,200,F,T 20 63 42,736 3.548

Furthermore, we can see that the number of cyclic routes
grows dramatically as the number of arcs increases. In order to
visualize the rate of change, Fig. 6 has been plotted. Despite
possible small fluctuations, Fig. 6 depicts an overall trend of
roughly exponential growth in both the number of cyclic
routes and searching time with the increase of the number of
arcs. As a consequence, this poses a great challenge to large
scale solution networks in terms of memory and computing
time. For instance, the number of cyclic routes climbs to
2,005,251 for instance named ‘C30,520,100,V,L’, whose
solution network consists of 30 nodes and 91 arcs, with
searching time going up to 251.316 seconds. Although our
method is still effective for a problem on such scale, the time
consumption may be unacceptable from the perspective of
practical applications.

46 7166

8

6151 56

24

40

56

72

(×
1
0
³)

88

104

120

136

152

168

1.5

4.5

7.5

10.5

13.5

16.5

19.5

0 0

N
o

. o
f C

y
clic R

o
u
tes

S
ea

rc
h
in

g
 T

im
e

(s
)

No. of Arcs

No. of Cyclic Routes

Searching Time

Fig. 6. The rate of change for searching time and No. of cyclic routes

In order to measure the cost of each cyclic route, three
metrics were designed in our experiment. In the case of ‘equal
cost’, the cost of each cyclic route is equal. For convenience,
the values of all of the costs are set to 1. The second metric
derives its name ‘counting cost’ from counting the number of
arcs in a cyclic route. The costs for the third metric, ‘fixed
cost’ are obtained by adding together the cost of each arc
included in a cyclic route. The cost of an arc here refers to the
value of ‘fixed_cost’ for this arc, which can be extracted from
the benchmark dataset described above. As an example, the
fixed cost for each arc in the solution network of instance
C20,230,200,V,L is shown in Table II. This solution network
consists of 57 arcs. Please note that the node representation of
an arc in this table, let’s say, (i->j) corresponds to an arc from
node (i+1) to node (j+1) in the benchmark dataset. The

9

original value of ‘fixed_cost’ for an arc is identified as ‘old’ in
the table. To simplify future calculation, we multiplied the
‘old’ value by 0.01 and then truncated the resulting number by
discarding the decimal part. The ‘new’ value for fixed cost
was used for subsequent optimization instead of the ‘old’
value.

As stated in Section 5, good pruning depends on
complete information from carriers and is better done case
by case. Since such information is not included in the test
dataset, we did pruning according to the cost of each route
in the experiment. Overall, pruning was performed based
on the principle that the routes whose costs were close to
the highest cost among all of the routes were less likely to
be in the optimal set. Hence we had adequate reason to
eliminate them without harming the third stage but we
cannot guarantee it for all cases.

For the counting cost, we chose as the pruning criterion
the rule that any route whose cost value was greater than
14 was to be pruned. There were other alternative values
possible and we chose the value 14 for demonstration

purposes only. Note that each cyclic route theoretically has
20 arcs at most because every instance in the experiment
consists of 20 nodes. Regarding the fixed cost, cost tables
like Table II are not the same for different instances.
Consequently, the instances range in the costs of routes
from relatively low to high. To deal with this, we chose for
each instance a value out of three options, namely 85, 135
and 185. These three values corresponded to the case of
low, medium and high costs respectively, with a constant
difference between the consecutive numbers. The pruning
criterion for the case of low costs was then defined as
removing those routes whose cost values are greater than
85. In the case of medium and high costs, the pruning
criteria were described in a similar fashion. With respect
to the equal cost, it stands to reason that a good solution
tends to include as many arcs as possible in one route. In
this way, all of the arcs could be covered with fewer routes
and thus a lower cost is induced. For this reason, we chose
to prune the routes which contained fewer than 11 arcs.
The results of pruning under three different conditions are
shown in Table III.

TABLE II. The fixed cost for each arc in the solution network of instance C20,230,200,V,L

Arc
Fixed Cost

Arc
Fixed Cost

Arc
Fixed Cost

Arc
Fixed Cost

old new old new old new old new

0->2 1149 11 5->10 416 4 10->5 294 2 16->9 734 7

0->10 318 3 5->11 367 3 10->8 245 2 16->19 1369 13

0->13 367 3 5->16 1931 19 10->18 392 3 17->2 440 4

1->7 1491 14 6->0 1760 17 11->0 1638 16 17->7 245 2

1->19 1100 11 6->9 440 4 11->3 831 8 17->18 318 3

2->3 245 2 7->15 440 4 11->9 856 8 17->19 1320 13

2->4 538 5 7->16 489 4 11->17 978 9 18->1 1345 13

2->15 343 3 8->5 660 6 12->8 929 9 18->11 1296 12

3->2 343 3 8->12 367 3 12->11 660 6 19->0 294 2

3->4 294 2 8->14 612 6 13->5 294 2 19->1 1003 10

3->8 1907 19 8->19 1100 11 13->6 783 7 19->10 1198 11

3->13 367 3 9->5 783 7 14->3 269 2 19->17 807 8

4->11 563 5 9->12 563 5 14->8 1565 15

4->17 880 8 9->14 1076 10 15->10 1467 14

5->6 318 3 10->3 1785 17 15->17 2102 21

TABLE III. Results of pruning under three different conditions

Instance

Equal Cost Counting Cost Fixed Cost

Pruning

Criterion (No.

of Arcs <)

No. of

Pruned

Routes

Percentage of

Pruned

Routes/%

Pruning

Criterion

(Cost Value >)

No. of

Pruned

Routes

Percentage of

Pruned

Routes/%

Pruning

Criterion

(Cost Value >)

No. of

Pruned

Routes

Percentage

of Pruned

Routes/%

C20,230,200,V,L 11 1,304 16.22 14 2,743 34.11 135 813 10.11

C20,230,200,F,L 11 347 35.85 14 120 12.40 185 580 59.92

C20,230,200,V,T 11 1,715 27.42 14 782 12.50 85 2,346 37.51

C20,230,200,F,T 11 3,149 18.17 14 4,584 26.44 185 6,272 36.18

C20,300,200,V,L 11 6,411 5.58 14 61,644 53.67 85 26,898 23.42

C20,300,200,F,L 11 4,360 11.40 14 14,743 38.56 135 25,783 67.43

C20,300,200,V,T 11 11,960 7.16 14 76,927 46.03 85 6,204 3.71

C20,300,200,F,T 11 4,782 11.19 14 16,171 37.84 135 20,702 48.44

It can be seen from Table III that each instance
contains poor cyclic routes that can be pruned. We shall
see later that more than 80 percent of this pruning does
not cause any change of the final solutions in the third
stage. With an appropriate pruning criterion, Table III
also indicates that a large proportion of routes can be

pruned for most instances. In the case of fixed cost, the
average percentage of pruned routes is more than 35
percent, whereas the average percentages in the cases of
counting cost and equal cost are 32 and 16 percent
respectively. We can expect a higher average percentage
for the latter two cases if the pruning criterion is tailor-

10

made for each instance. Pruning in this fashion helps to
greatly reduce the memory usage and the risk of out-of-
memory, because there are usually huge amounts of
information about the cyclic routes that need to be stored
as the inputs for the third stage. Besides, a lower-level
memory requirement enables the proposed algorithm to
deal with larger sized instances. Pruning is further
discussed in the results of the third stage.

Now we come to the third stage of our scheme, namely
selecting a set of cyclic routes, from all of the cyclic routes,
to cover the entire network. The weighted set covering
model established in Section 6 was solved with IBM ILOG
CPLEX V12.6.1. The input data of this model was created
based on the arcs and cyclic routes obtained in the first
and second stages respectively. The optimization results
for three different kinds of costs and corresponding
running times are reported in Table IV.

 As can be seen from Table IV, CPLEX could find
optimal solutions to all of the eight instances within 68
seconds. In particular, the running time for each instance
reduced noticeably after pruning. More importantly, more
than 80 percent of this pruning does not cause any change
of the final solutions. There are only four cells where the
final solution failed to attain the optimal value or the same
set of optimal routes after pruning. In fact, this failure is a

direct result of overly aggressive pruning. Take the
instance ‘C20,230,200,F,T’ as an example. Its optimal
solution includes a cyclic route whose cost value is 15. In
the case of counting cost, any route whose cost value is
greater than 14 will be pruned according to the pruning
criterion. Hence this cyclic route will be pruned before the
third stage. If the pruning criterion were set to be 15 or
higher, the final solution would still attain the same set of
optimal routes after pruning. Conversely, sometimes
pruning was done too cautiously. Take the instance
‘C20,300,200,V,T’ with fixed cost as an example. It is
shown in Table III that only 3.71 percent of the routes
were pruned. If the pruning criterion were set to be 60, the
number of pruned routes would increase to 72,067 and the
percentage would rise to 43.12. This result would be more
desirable since the optimal solution still remained
unchanged. It is hard to define an appropriate pruning
criterion suitable for all cases. Part of the problem here is,
of course, that we utilized only example values for the
pruning here, whereas in real situations users will
probably have more information about what is likely to
happen and what is acceptable and could use this to tune
the pruning. In order to achieve a desirable result, the
pruning criterion should probably be tailored for each
instance, using knowledge about the problem to solve, or
investigating alternatives.

TABLE IV. Optimization results of selecting cyclic routes under three different conditions

Instance

Equal Cost Counting Cost Fixed Cost

Optimal

Value of

Objective

Function

Time/s Optimal

Value of

Objective

Function

Time/s Optimal

Value of

Objective

Function

Time/s

Before

Pruning

After

Pruning

Before

Pruning

After

Pruning

Before

Pruning

After

Pruning

C20,230,200,V,L 4 4.92 2.98 57 2.95 0.92 437 5.47 1.81

C20,230,200,F,L 5 0.85 * 46 0.66 0.08 795 0.92 0.38

C20,230,200,V,T 6 2.93 ** 56 1.76 0.86 358 3.89 1.12

C20,230,200,F,T 6 6.67 3.89 61 3.12 ** 775 4.50 1.25

C20,300,200,V,L 4 59.47 38.39 66 67.09 ** 327 30.85 16.58

C20,300,200,F,L 5 15.09 7.96 62 11.61 6.07 678 9.43 4.35

C20,300,200,V,T 6 64.92 39.22 71 66.08 32.84 301 48.26 21.70

C20,300,200,F,T 5 13.01 8.28 63 15.33 6.46 603 10.60 5.07

*: The objective function failed to attain the optimal value after pruning.
**: The optimal objective value was attained but the actual solution (i.e. the set of optimal routes) was different.

To explain these optimization results in further detail, we
think about instance C20,230,200,V,L as an example. As
stated above, its solution network consists of 57 arcs. In the
case of equal cost, the optimal set of cyclic routes is displayed
in Table V. There are 4 cyclic routes selected to cover all of
the 57 arcs. Consequently, the optimum of the objective
function should be 4, which is exactly the corresponding
‘Optimal Value of Objective Function’ in Table IV. In the
context of counting cost, the optimal set includes 13 cyclic
routes, as shown in Table VI. Since the cost of a route refers to
the number of arcs in it, the total cost comes to 57. The sum
explains where the value of 57 in Table IV comes from. In
respect of fixed cost, 13 cyclic routes depicted in Table VII
comprises the optimal set. As the fixed cost of each arc can be
looked up in Table II, we can calculate the sum of each route’s
cost. That is how we get 437 for the ‘Optimal Value of
Objective Function’ in Table IV.

Summarizing all of the computational results above, we
can see that the proposed scheme could efficiently find the
optimal set of cyclic routes to cover a given service network
including no more than 71 arcs within 86 seconds. This result
indicates not only the effectiveness of the proposed scheme,
but also its efficiency to transform the optimized service
network into a set of cyclic routes.

As is known, the service network design problem is NP-
hard and there is no efficient solution procedure for large scale
networks. We have to admit that when the scale of the service
network design solution grows much larger, our scheme is
confronted with a similar problem. Its performance becomes
poor due to unacceptable time consumption and memory
requirements. In other words, without modification, our
scheme is not currently applicable for large scale problems
either.

11

TABLE V. The optimal set of cyclic routes for instance C20,230,200,V,L
with equal cost

Index

of a

Cyclic

Route

Node Representation No. of Arcs
Equal

Cost

1511
0->13->5->6->9->14->8->19->10

->3->2->15->17->18->11->0
15 1

2538
0->10->5->16->19->17->2->4->11

->9->12->8->14->3->13->6->0
16 1

5745
0->2->3->8->5->11->17->7->15

->10->18->1->19->0
13 1

7337
10->8->12->11->3->4->17->19->1

->7->16->9->5->10
13 1

TABLE VI. The optimal set of cyclic routes for instance C20,230,200,V,L
with counting cost

Index of

a Cyclic

Route

Node Representation No. of Arcs Counting Cost

1768 0->13->5->6->0 4 4

1896 0->10->18->11->0 4 4

4117
0->2->15->10->5->11->3

->13->6->9->12->8->19->0
13 13

6658 2->4->17->2 3 3

7042 2->3->2 2 2

7296 10->8->12->11->17->19->10 6 6

7789 10->3->8->5->10 4 4

7921 1->19->17->18->1 4 4

7924 1->7->16->19->1 4 4

8000 7->15->17->7 3 3

8023 3->4->11->9->14->3 5 5

8026 8->14->8 2 2

8038 5->16->9->5 3 3

TABLE VII. The optimal set of cyclic routes for instance C20,230,200,V,L
with fixed cost

Index

of a

Cyclic

Route

Node Representation
No. of

Arcs

Fixed

Cost

1230 0->13->5->11->0 4 24

2964 0->10->3->8->19->0 5 52

4789
0->2->4->17->18->1->7->15->10

->8->12->11->9->14->3->13->6->0
17 130

6196 2->15->17->2 3 28

7042 2->3->2 2 5

7043 10->18->11->17->19->10 5 48

7547 10->5->10 2 6

7922 1->19->1 2 21

7978 7->16->19->17->7 4 27

8025 3->4->11->3 3 15

8026 8->14->8 2 21

8030 8->5->16->9->12->8 5 46

8039 5->6->9->5 3 14

8 CONCLUSIONS AND FUTURE DIRECTIONS

To assign a cyclic route to each vehicle and keep services
running well for LTL carriers, we propose to transform the
solution network of the Arc-based SNDP model into a set of
cyclic routes that cover all arcs in the network. The solution
strategy is decomposed into three stages. The first stage aims
to find all of the different cyclic routes in a solution network
and we present an algorithm based on depth-first search to
solve it. One great advantage of the decomposition strategy is
that it enables us to prune poor cyclic routes before route
assignment. Pruning can also be done in the first stage to make

the proposed algorithm faster. The third stage is to select a set
of cyclic routes to cover the entire network. It is formulated as
a weighted set covering problem. The resulting model as an
integer program is solved with CPLEX solver and optimal
solutions are obtained in reasonable time. Experimental results
have shown that the proposed scheme is quite effective with
regard to solution quality and computational efficiency.

As we have mentioned, one limitation of the proposed
strategy is that it is not applicable to larger problems. This is
not surprising if we consider the fact that generally neither
service network design problems nor other large scale NP-
hard integer programs can be solved to optimality within
reasonable time. Future progress in network design and integer
programming is expected to help improve the performance of
our scheme on medium and large scale problems. Various
heuristic optimisations in the choice of cycles to use, or
column generation approaches are obvious candidates. One
aim of this paper is to encourage other researchers to consider
this interesting problem.

We take vehicle balancing constraints into account in this
paper. As a matter of fact, there are many other issues for LTL
carriers to consider when setting up transport service plans.
For instance, working time regulations are of extraordinary
importance. LTL carriers must organize the work of drivers in
a way that drivers are able to comply with the respective
regulations. Therefore it will be of value to introduce time
constraints into the problem for practical transport planning in
the future. This three-phase scheme is ideal for this, since
many cycle-length regulations can be considered in the route
generation and cost function design.

ACKNOWLEDGMENTS

This work is supported by the National Natural Science
Foundation of China (NSFC 71471092), Ningbo Science &
Technology Bureau (2014A35006) and the International
Doctoral Innovation Centre (IDIC) scholarship scheme.

REFERENCES
Ahuja, R. K., Magnanti, T. L., Orlin, J. B. (1993), Network Flows:

Theory, Algorithms, and Applications, Prentice-Hall, Upper
Saddle River, New Jersey.

Andersen, J., Christiansen, M., Crainic, T. G., Gronhaug, R. (2011),
“Branch and price for service network design with asset
management constraints”, Transportation Science, 45 (1): 33–49.

Andersen, J., Crainic, T. G., Christiansen, M. (2009), “Service
network design with management and coordination of multiple
fleets”, Transportation Research Part C: Emerging Technologies,
17(2): 197–207.

Azadeha, A., Farahani, M. H., Eivazy, H., Shirkouhi, S. N.,
Asadipour, G. (2013), “A hybrid meta-heuristic algorithm for
optimization of crew scheduling”, Applied Soft Computing, 13:
158–164.

Bai, R., Kendall, G., Li, J. (2010), “An efficient guided local search
approach for service network design problem with asset
balancing”, International Conference on Logistics Systems and
Intelligent Management, January 2010, Harbin, China, 110–115.

Bai, R., Kendall, G., Qu, R., Atkin, J. (2012), “Tabu assisted guided
local search approaches for freight service network design”,
Information Sciences, 189: 266–281.

http://www.sciencedirect.com/science/journal/0968090X
http://www.sciencedirect.com/science/journal/00200255

12

Bai, R., Wallace, S. W., Li, J., Chong, A. Y.-L. (2014), “Stochastic
service network design with rerouting”, Transportation Research
Part B: Methodological, 60: 50–65.

Bai, R., Xue, N., Chen, J., Roberts, G. W. (2015), “A set-covering
model for a bidirectional multi-shift full truckload vehicle routing
problem”, Transportation Research Part B: Methodological, 79:
134–148.

Barcos, L., Rodriguez, V., Alvarez, M., Robuste, F. (2010), “Routing
design for less-than-truckload motor carriers using ant colony
optimization”, Transportation Research Part E: Logistics and
Transportation Review, 46: 367–383.

Benslimane, M. T., Benadada, Y. (2013), “Ant colony algorithm for
the multi-depot vehicle routing problem in large quantities by a
heterogeneous fleet of vehicles”, INFOR, 51(1): 31–40.

Berbeglia, G., Cordeau, J.-F., Gribkovskaia, I., Laporte, G. (2007),
“Static pickup and delivery problems: a classification scheme and
survey”, TOP, 15: 1–31.

Caprara, A., Fischetti, M., Toth, P. (1999), “A heuristic method for
the set covering problem”, Operations research, 47(5): 730–743.

Cordeau, J.-F., Laporte, G., Ropke, S. (2008), “Recent models and
algorithms for one-to-one pickup and delivery problems”. Golden
B., Raghavan S., Wasil E. (eds), The Vehicle Routing Problem:
Latest Advances and New Challenges, Springer, New York, 327–
357.

Cordeau, J.-F., Laporte, G. (2003), “The dial-a-ride problem (DARP):
variants, modeling issues and algorithms”, 4OR-A Quarterly
Journal of Operations Research, 1: 89–101.

Costa, A. M. (2005), “A survey on benders decomposition applied to
fixed-charge network design problems”, Computers & Operations
Research, 32(6): 1429–1450.

Crainic, T.G. (2000), “Service network design in freight
transportation”, European Journal of Operational Research,
122(2): 272–288.

Crainic, T. G., Gendreau, M., Farvolden, J. M. (2000), “A simplex-
based tabu search method for capacitated network design”,
INFORMS Journal on Computing, 12(3): 223–236.

Crainic, T. G., Hewitt, M., Toulouse, M., Vu, D.M. (2014), “Service
network design with resource constraints”, Transportation Science,
accepted for publication.

Crainic, T. G., Li, Y. (2006), “A first multilevel cooperative
algorithm for capacitated multicommodity network design”
Computers & Operations Research, 33(9): 2602–2622.

Erera, A., Karacık, B., Savelsbergh, M. (2008), “A dynamic driver
management scheme for less-than-truckload carriers”, Computers
& Operations Research, 35(11): 3397–3411.

Ghamlouche, I., Crainic, T. G., Gendreau, M. (2004), “Path relinking,
cycle-based neighbourhoods and capacitated multicommodity
network design”, Annals of Operations Research, 131: 109–133.

Goel, A., Gruhn, V. (2006), “Drivers’ working hours in vehicle
routing and scheduling”, IEEE Intelligent Transportation Systems
Conference, Sept. 2006, Toronto, Canada, 1280–1285.

Groiez, M., Desaulniers, G., Marcotte, O. (2014), “Valid inequalities
and separation algorithms for the set partitioning problem”,
INFOR, 52(4): 185–196.

Kok, A. L., Meyer, C. M., Kopfer, H., Schutten, J. M. J. (2010), “A
dynamic programming heuristic for the vehicle routing problem
with time windows and European community social legislation”,
Transportation Science, 44(4): 442–454.

Laporte, G. (1992), “The vehicle routing problem: An overview of
exact and approximate algorithms”, European Journal of
Operational Research, 59 (3): 345–358.

Pederson, M. B., Crainic, T. G., Madsen, O.B.G. (2008), “Models
and tabu search metaheuristics for service network design with
asset-balance requirements”, Transportation Science, 43(2): 158–
177.

Rancourt, M.-E., Cordeau, J.-F., Laporte, G. (2012), “Long-haul
vehicle routing and scheduling with working hour rules”,
Transportation Science, 47(1): 81–107.

Smilowitz, K. R., Atamtürk, A., Daganzo, C. F. (2003), “Deferred
item and vehicle routing within integrated networks”,
Transportation Research Part E: Logistics and Transportation
Review, 39(4): 305–323.

Spoorendonk, S., Desaulniers, G. (2010), “Clique inequalities applied
to the vehicle routing problem with time windows”, INFOR, 48(1):
53–67.

Sundar, S., Singh, A. (2012), “A hybrid heuristic for the set covering
problem”, Operational Research, 12(3): 345–365.

Tarjan R. E. (1972), “Depth-first search and linear graph algorithms”,
SIAM Journal of Computing, 1(2): 146–160.

Teypaz, N., Schrenk, S., Cung, V. D. (2010), “A decomposition
scheme for large-scale service network design with asset
management”, Transportation Research Part E: Logistics and
Transportation Review, 46(1): 156–170.

Thapalia, B. K., Crainic, T. G., Kaut, M., Wallace, S. W. (2011),
“Single-commodity stochastic network design with multiple
sources and sinks”, INFOR, 49(3): 193–211.

Vu, D. M., Crainic, T. G., Toulouse M. (2013), “A three-phase
matheuristic for capacitated multi-commodity fixed-cost network
design with design-balance constraints”, Journal of Heuristics,
19(5): 757–795.

Weiss, M. A. (2013), Data Structures and Algorithm Analysis in
C++ [Fourth Edition], Pearson Education, Upper Saddle River,
New Jersey.

Wieberneit, N. (2008), “Service network design for freight
transportation: a review”, OR Spectrum, 30(1): 77–112.

http://www.sciencedirect.com/science/journal/13665545
http://www.sciencedirect.com/science/journal/13665545
http://pubsonline.informs.org/action/doSearch?text1=Caprara%2C+A&field1=Contrib
http://pubsonline.informs.org/action/doSearch?text1=Fischetti%2C+M&field1=Contrib
http://pubsonline.informs.org/action/doSearch?text1=Toth%2C+P&field1=Contrib
http://www.sciencedirect.com/science/article/pii/S0305054803003435
http://pubsonline.informs.org/action/doSearch?text1=Gendreau%2C+Michel&field1=Contrib
http://pubsonline.informs.org/action/doSearch?text1=Farvolden%2C+Judith+M&field1=Contrib
http://pubsonline.informs.org/action/doSearch?text1=Hewitt%2C+M&field1=Contrib
http://pubsonline.informs.org/action/doSearch?text1=Toulouse%2C+M&field1=Contrib
http://pubsonline.informs.org/action/doSearch?text1=Vu%2C+D+M&field1=Contrib
http://pubsonline.informs.org/action/doSearch?text1=Kok%2C+A+L&field1=Contrib
http://pubsonline.informs.org/journal/trsc
http://econpapers.repec.org/RePEc:eee:ejores:v:59:y:1992:i:3:p:345-358
http://econpapers.repec.org/RePEc:eee:ejores:v:59:y:1992:i:3:p:345-358
http://pubsonline.informs.org/action/doSearch?text1=Madsen%2C+O+B+G&field1=Contrib
http://pubsonline.informs.org/action/doSearch?text1=Rancourt%2C+Marie-eve&field1=Contrib
http://pubsonline.informs.org/action/doSearch?text1=Cordeau%2C+Jean-fran%C3%A7ois&field1=Contrib
http://pubsonline.informs.org/action/doSearch?text1=Laporte%2C+Gilbert&field1=Contrib
http://pubsonline.informs.org/journal/trsc
http://www.sciencedirect.com/science/article/pii/S1366554502000480
http://www.sciencedirect.com/science/article/pii/S1366554502000480
http://www.sciencedirect.com/science/article/pii/S1366554502000480
http://www.sciencedirect.com/science/journal/13665545
http://www.sciencedirect.com/science/journal/13665545
http://link.springer.com/search?facet-author=%22Shyam+Sundar%22
http://link.springer.com/search?facet-author=%22Alok+Singh%22
http://link.springer.com/journal/12351
http://www.sciencedirect.com/science/journal/13665545
http://www.sciencedirect.com/science/journal/13665545
http://link.springer.com/journal/291

	1 INTRODUCTION
	2 LITERATURE REVIEW
	2.1 Service Network Design
	2.2 Crew Scheduling

	3 PROBLEM DESCRIPTION
	3.1 Node-Arc Model
	3.2 Determining Vehicle Routes
	3.3 SNDP versus VRP

	4 FINDING ALL THE DIFFERENT CYCLIC ROUTES
	4.1 Representation of Networks
	4.2 Searching for All the Different Cyclic Routes

	5 PRUNING OF POOR CYCLIC ROUTES
	6 COVERING A SERVICE NETWORK
	7 COMPUTATIONAL RESULTS AND ANALYSIS
	8 CONCLUSIONS AND FUTURE DIRECTIONS
	ACKNOWLEDGMENTS
	REFERENCES

