267 research outputs found

    Provisioning Mass by Females of the Maritime Earwig, Anisolabis maritima, is not Adjusted Based on the Number of Young

    Get PDF
    The amount of parental provisioning is thought to reflect the need of offspring. This hypothesis was tested in the case of provisioning food mass to young with controlled clutch size using the maritime earwig, Anisolabis maritima Bonelli (Dermaptera: Anisolabididae). The female provisioned a constant mass of food to the young irrespective of the number of nymphs and the distance of food carrying. In addition, the survival rate of young did not change with adjusted clutch size. This study showed that A. maritima females appear to provide food mass to their nymphs independent of their number

    Remarkable Rates of Lightning Strike Mortality in Malawi

    Get PDF
    Livingstone's second mission site on the shore of Lake Malawi suffers very high rates of consequential lightning strikes. Comprehensive interviewing of victims and their relatives in seven Traditional Authorities in Nkhata Bay District, Malawi revealed that the annual rate of consequential strikes was 419/million, more than six times higher than that in other developing countries; the rate of deaths from lightning was 84/million/year, 5.4 times greater than the highest ever recorded. These remarkable figures reveal that lightning constitutes a significant stochastic source of mortality with potential life history consequences, but it should not deflect attention away from the more prominent causes of mortality in this rural area

    Plastisol Foaming Process. Decomposition of the Foaming Agent, Polymer Behavior in the Corresponding Temperature Range and Resulting Foam Properties

    Get PDF
    The decomposition of azodicarbonamide, used as foaming agent in PVC - plasticizer (1/1) plastisols was studied by DSC. Nineteen different plasticizers, all belonging to the ester family, two being polymeric (polyadipates), were compared. The temperature of maximum decomposition rate (in anisothermal regime at 5 K min-1 scanning rate), ranges between 434 and 452 K. The heat of decomposition ranges between 8.7 and 12.5 J g -1. Some trends of variation of these parameters appear significant and are discussed in terms of solvent (matrix) and viscosity effects on the decomposition reactions. The shear modulus at 1 Hz frequency was determined at the temperature of maximum rate of foaming agent decomposition, and differs significantly from a sample to another. The foam density was determined at ambient temperature and the volume fraction of bubbles was used as criterion to judge the efficiency of the foaming process. The results reveal the existence of an optimal shear modulus of the order of 2 kPa that corresponds roughly to plasticizer molar masses of the order of 450 Β± 50 g mol-1. Heavier plasticizers, especially polymeric ones are too difficult to deform. Lighter plasticizers such as diethyl phthalate (DEP) deform too easily and presumably facilitate bubble collapse

    Gender Separation Increases Somatic Growth in Females but Does Not Affect Lifespan in Nothobranchius furzeri

    Get PDF
    According to life history theory, physiological and ecological traits and parameters influence an individual's life history and thus, ultimately, its lifespan. Mating and reproduction are costly activities, and in a variety of model organisms, a negative correlation of longevity and reproductive effort has been demonstrated. We are employing the annual killifish Nothobranchius furzeri as a vertebrate model for ageing. N. furzeri is the vertebrate displaying the shortest known lifespan in captivity with particular strains living only three to four months under optimal laboratory conditions. The animals show explosive growth, early sexual maturation and age-dependent physiological and behavioural decline. Here, we have used N. furzeri to investigate a potential reproduction-longevity trade-off in both sexes by means of gender separation. Though female reproductive effort and offspring investment were significantly reduced after separation, as investigated by analysis of clutch size, eggs in the ovaries and ovary mass, the energetic surplus was not reallocated towards somatic maintenance. In fact, a significant extension of lifespan could not be observed in either sex. This is despite the fact that separated females, but not males, grew significantly larger and heavier than the respective controls. Therefore, it remains elusive whether lifespan of an annual species evolved in periodically vanishing habitats can be prolonged on the cost of reproduction at all

    Quantitative Genetics, Pleiotropy, and Morphological Integration in the Dentition of Papio hamadryas

    Get PDF
    Variation in the mammalian dentition is highly informative of adaptations and evolutionary relationships, and consequently has been the focus of considerable research. Much of the current research exploring the genetic underpinnings of dental variation can trace its roots to Olson and Miller's 1958 book Morphological Integration. These authors explored patterns of correlation in the post-canine dentitions of the owl monkey and Hyopsodus, an extinct condylarth from the Eocene. Their results were difficult to interpret, as was even noted by the authors, due to a lack of genetic information through which to view the patterns of correlation. Following in the spirit of Olson and Miller's research, we present a quantitative genetic analysis of dental variation in a pedigreed population of baboons. We identify patterns of genetic correlations that provide insight to the genetic architecture of the baboon dentition. This genetic architecture indicates the presence of at least three modules: an incisor module that is genetically independent of the post-canine dentition, and a premolar module that demonstrates incomplete pleiotropy with the molar module. We then compare this matrix of genetic correlations to matrices of phenotypic correlations between the same measurements made on museum specimens of another baboon subspecies and the Southeast Asian colobine Presbytis. We observe moderate significant correlations between the matrices from these three primate taxa. From these observations we infer similarity in modularity and hypothesize a common pattern of genetic integration across the dental arcade in the Cercopithecoidea

    Costs of Inducible Defence along a Resource Gradient

    Get PDF
    In addition to having constitutive defence traits, many organisms also respond to predation by phenotypic plasticity. In order for plasticity to be adaptive, induced defences should incur a benefit to the organism in, for example, decreased risk of predation. However, the production of defence traits may include costs in fitness components such as growth, time to reproduction, or fecundity. To test the hypothesis that the expression of phenotypic plasticity incurs costs, we performed a common garden experiment with a freshwater snail, Radix balthica, a species known to change morphology in the presence of molluscivorous fish. We measured a number of predator-induced morphological and behavioural defence traits in snails that we reared in the presence or absence of chemical cues from fish. Further, we quantified the costs of plasticity in fitness characters related to fecundity and growth. Since plastic responses may be inhibited under limited resource conditions, we reared snails in different densities and thereby levels of competition. Snails exposed to predator cues grew rounder and thicker shells, traits confirmed to be adaptive in environments with fish. Defence traits were consistently expressed independent of density, suggesting strong selection from predatory molluscivorous fish. However, the expression of defence traits resulted in reduced growth rate and fecundity, particularly with limited resources. Our results suggest full defence in predator related traits regardless of resource availability, and costs of defence consequently paid in traits related to fitness

    High Temperature Triggers Latent Variation among Individuals: Oviposition Rate and Probability for Outbreaks

    Get PDF
    It is anticipated that extreme population events, such as extinctions and outbreaks, will become more frequent as a consequence of climate change. To evaluate the increased probability of such events, it is crucial to understand the mechanisms involved. Variation between individuals in their response to climatic factors is an important consideration, especially if microevolution is expected to change the composition of populations.Here we present data of a willow leaf beetle species, showing high variation among individuals in oviposition rate at a high temperature (20 Β°C). It is particularly noteworthy that not all individuals responded to changes in temperature; individuals laying few eggs at 20 Β°C continued to do so when transferred to 12 Β°C, whereas individuals that laid many eggs at 20 Β°C reduced their oviposition and laid the same number of eggs as the others when transferred to 12 Β°C. When transferred back to 20 Β°C most individuals reverted to their original oviposition rate. Thus, high variation among individuals was only observed at the higher temperature. Using a simple population model and based on regional climate change scenarios we show that the probability of outbreaks increases if there is a realistic increase in the number of warm summers. The probability of outbreaks also increased with increasing heritability of the ability to respond to increased temperature.If climate becomes warmer and there is latent variation among individuals in their temperature response, the probability for outbreaks may increase. However, the likelihood for microevolution to play a role may be low. This conclusion is based on the fact that it has been difficult to show that microevolution affect the probability for extinctions. Our results highlight the urge for cautiousness when predicting the future concerning probabilities for extreme population events

    Trade-offs between vegetative growth and acorn production in Quercus lobata during a mast year: the relevance of crop size and hierarchical level within the canopy

    Get PDF
    The concept of trade-offs between reproduction and other fitness traits is a fundamental principle of life history theory. For many plant species, the cost of sexual reproduction affects vegetative growth in years of high seed production through the allocation of resources to reproduction at different hierarchical levels of canopy organization. We have examined these tradeoffs at the shoot and branch level in an endemic California oak, Quercus lobata, during a mast year. To determine whether acorn production caused a reduction in vegetative growth, we studied trees that were high and low acorn producers, respectively. We observed that in both low and high acorn producers, shoots without acorns located adjacent to reproductive shoots showed reduced vegetative growth but that reduced branch-level growth on acorn-bearing branches occurred only in low acorn producers. The availability of local resources, measured as previous year growth, was the main factor determining acorn biomass. These findings show that the costs of reproduction varied among hierarchical levels, suggesting some degree of physiological autonomy of shoots in terms of acorn production. Costs also differed among trees with different acorn crops, suggesting that trees with large acorn crops had more available resources to allocate for growth and acorn production and to compensate for immediate local costs of seed production. These findings provide new insight into the proximate mechanisms for mast-seeding as a reproductive strategy

    Effects of Cu/Zn Superoxide Dismutase (sod1) Genotype and Genetic Background on Growth, Reproduction and Defense in Biomphalaria glabrata

    Get PDF
    Resistance of the snail Biomphalaria glabrata to the trematode Schistosoma mansoni is correlated with allelic variation at copper-zinc superoxide dismutase (sod1). We tested whether there is a fitness cost associated with carrying the most resistant allele in three outbred laboratory populations of snails. These three populations were derived from the same base population, but differed in average resistance. Under controlled laboratory conditions we found no cost of carrying the most resistant allele in terms of fecundity, and a possible advantage in terms of growth and mortality. These results suggest that it might be possible to drive resistant alleles of sod1 into natural populations of the snail vector for the purpose of controlling transmission of S. mansoni. However, we did observe a strong effect of genetic background on the association between sod1 genotype and resistance. sod1 genotype explained substantial variance in resistance among individuals in the most resistant genetic background, but had little effect in the least resistant genetic background. Thus, epistatic interactions with other loci may be as important a consideration as costs of resistance in the use of sod1 for vector manipulation
    • …
    corecore