1,743 research outputs found

    Structure and superconducting properties of ((Ln(1-x)Ln*(x) 1/2 (Ba(1-y)Sr(y) 1/3 Ce 1/6) 8Cu6O(z)

    Get PDF
    A variety of new oxide superconductors were prepared. The crystallographic structures of the oxides were all tetragonal and of the (Ln(+), Ce)4(Ln(+),Ba)4Cu6Oz (Ln(+) = Nd, Sm or Eu) type which had been previously discovered by Akimitsu et al. As the Sr content, y, increased when Ln = Ln(excited state) = Nd, the oxygen content, z, monotonically increased and the superconducting transition temperature, T(sub c), varied exhibiting a maximum. When z was controlled directly by means of high oxygen pressure sintering techniques, T(sub c) was changed accordingly. T(sub c's) of samples with different combinations of Ln and Ln(excited state) and different values of x and y were found to depend on the magnitude of the bond valence sum for a Cu atom located in the bottom plane of the Cu-O5 pyramid. Transport and magnetization measurements were carried out to investigate the magnetic field dependence of superconducting properties and to determine the phenomenological parameters. The Hall coefficients were positive below room temperature and varied yielding a maximum with respect to temperature

    2D-Qsar for 450 types of amino acid induction peptides with a novel substructure pair descriptor having wider scope

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Quantitative structure-activity relationships (QSAR) analysis of peptides is helpful for designing various types of drugs such as kinase inhibitor or antigen. Capturing various properties of peptides is essential for analyzing two-dimensional QSAR. A descriptor of peptides is an important element for capturing properties. The atom pair holographic (APH) code is designed for the description of peptides and it represents peptides as the combination of thirty-six types of key atoms and their intermediate binding between two key atoms.</p> <p>Results</p> <p>The substructure pair descriptor (SPAD) represents peptides as the combination of forty-nine types of key substructures and the sequence of amino acid residues between two substructures. The size of the key substructures is larger and the length of the sequence is longer than traditional descriptors. Similarity searches on C5a inhibitor data set and kinase inhibitor data set showed that order of inhibitors become three times higher by representing peptides with SPAD, respectively. Comparing scope of each descriptor shows that SPAD captures different properties from APH.</p> <p>Conclusion</p> <p>QSAR/QSPR for peptides is helpful for designing various types of drugs such as kinase inhibitor and antigen. SPAD is a novel and powerful descriptor for various types of peptides. Accuracy of QSAR/QSPR becomes higher by describing peptides with SPAD.</p

    Cervelleite, Ag4TeS: solution and description of the crystal structure

    Get PDF
    Copyright: Springer-Verlag Wien 2015. This is the final, post refereeing version. You are advised to consult the publisher's version if you wish to cite from it, http://link.springer.com/article/10.1007%2Fs00710-015-0384-

    "Open Innovation" and "Triple Helix" Models of Innovation: Can Synergy in Innovation Systems Be Measured?

    Get PDF
    The model of "Open Innovations" (OI) can be compared with the "Triple Helix of University-Industry-Government Relations" (TH) as attempts to find surplus value in bringing industrial innovation closer to public R&D. Whereas the firm is central in the model of OI, the TH adds multi-centeredness: in addition to firms, universities and (e.g., regional) governments can take leading roles in innovation eco-systems. In addition to the (transversal) technology transfer at each moment of time, one can focus on the dynamics in the feedback loops. Under specifiable conditions, feedback loops can be turned into feedforward ones that drive innovation eco-systems towards self-organization and the auto-catalytic generation of new options. The generation of options can be more important than historical realizations ("best practices") for the longer-term viability of knowledge-based innovation systems. A system without sufficient options, for example, is locked-in. The generation of redundancy -- the Triple Helix indicator -- can be used as a measure of unrealized but technologically feasible options given a historical configuration. Different coordination mechanisms (markets, policies, knowledge) provide different perspectives on the same information and thus generate redundancy. Increased redundancy not only stimulates innovation in an eco-system by reducing the prevailing uncertainty; it also enhances the synergy in and innovativeness of an innovation system.Comment: Journal of Open Innovations: Technology, Market and Complexity, 2(1) (2016) 1-12; doi:10.1186/s40852-016-0039-

    "Meaning" as a sociological concept: A review of the modeling, mapping, and simulation of the communication of knowledge and meaning

    Full text link
    The development of discursive knowledge presumes the communication of meaning as analytically different from the communication of information. Knowledge can then be considered as a meaning which makes a difference. Whereas the communication of information is studied in the information sciences and scientometrics, the communication of meaning has been central to Luhmann's attempts to make the theory of autopoiesis relevant for sociology. Analytical techniques such as semantic maps and the simulation of anticipatory systems enable us to operationalize the distinctions which Luhmann proposed as relevant to the elaboration of Husserl's "horizons of meaning" in empirical research: interactions among communications, the organization of meaning in instantiations, and the self-organization of interhuman communication in terms of symbolically generalized media such as truth, love, and power. Horizons of meaning, however, remain uncertain orders of expectations, and one should caution against reification from the meta-biological perspective of systems theory

    Sociological and Communication-Theoretical Perspectives on the Commercialization of the Sciences

    Get PDF
    Both self-organization and organization are important for the further development of the sciences: the two dynamics condition and enable each other. Commercial and public considerations can interact and "interpenetrate" in historical organization; different codes of communication are then "recombined." However, self-organization in the symbolically generalized codes of communication can be expected to operate at the global level. The Triple Helix model allows for both a neo-institutional appreciation in terms of historical networks of university-industry-government relations and a neo-evolutionary interpretation in terms of three functions: (i) novelty production, (i) wealth generation, and (iii) political control. Using this model, one can appreciate both subdynamics. The mutual information in three dimensions enables us to measure the trade-off between organization and self-organization as a possible synergy. The question of optimization between commercial and public interests in the different sciences can thus be made empirical.Comment: Science & Education (forthcoming

    Chromosomal-level assembly of the Asian Seabass genome using long sequence reads and multi-layered scaffolding

    Get PDF
    We report here the ~670 Mb genome assembly of the Asian seabass (Lates calcarifer), a tropical marine teleost. We used long-read sequencing augmented by transcriptomics, optical and genetic mapping along with shared synteny from closely related fish species to derive a chromosome-level assembly with a contig N50 size over 1 Mb and scaffold N50 size over 25 Mb that span ~90% of the genome. The population structure of L. calcarifer species complex was analyzed by re-sequencing 61 individuals representing various regions across the species' native range. SNP analyses identified high levels of genetic diversity and confirmed earlier indications of a population stratification comprising three clades with signs of admixture apparent in the South-East Asian population. The quality of the Asian seabass genome assembly far exceeds that of any other fish species, and will serve as a new standard for fish genomics

    Coulomb Interactions between Cytoplasmic Electric Fields and Phosphorylated Messenger Proteins Optimize Information Flow in Cells

    Get PDF
    Normal cell function requires timely and accurate transmission of information from receptors on the cell membrane (CM) to the nucleus. Movement of messenger proteins in the cytoplasm is thought to be dependent on random walk. However, Brownian motion will disperse messenger proteins throughout the cytosol resulting in slow and highly variable transit times. We propose that a critical component of information transfer is an intracellular electric field generated by distribution of charge on the nuclear membrane (NM). While the latter has been demonstrated experimentally for decades, the role of the consequent electric field has been assumed to be minimal due to a Debye length of about 1 nanometer that results from screening by intracellular Cl- and K+. We propose inclusion of these inorganic ions in the Debye-Huckel equation is incorrect because nuclear pores allow transit through the membrane at a rate far faster than the time to thermodynamic equilibrium. In our model, only the charged, mobile messenger proteins contribute to the Debye length.Using this revised model and published data, we estimate the NM possesses a Debye-Huckel length of a few microns and find this is consistent with recent measurement using intracellular nano-voltmeters. We demonstrate the field will accelerate isolated messenger proteins toward the nucleus through Coulomb interactions with negative charges added by phosphorylation. We calculate transit times as short as 0.01 sec. When large numbers of phosphorylated messenger proteins are generated by increasing concentrations of extracellular ligands, we demonstrate they generate a self-screening environment that regionally attenuates the cytoplasmic field, slowing movement but permitting greater cross talk among pathways. Preliminary experimental results with phosphorylated RAF are consistent with model predictions.This work demonstrates that previously unrecognized Coulomb interactions between phosphorylated messenger proteins and intracellular electric fields will optimize information transfer from the CM to the NM in cells
    • …
    corecore