1,210 research outputs found

    Smooth vortex precession in superfluid 4He

    Full text link
    We have measured a precessing superfluid vortex line, stretched from a wire to the wall of a cylindrical cell. By contrast to previous experiments with a similar geometry, the motion along the wall is smooth. The key difference is probably that our wire is substantially off center. We verify several numerical predictions about the motion, including an asymmetry in the precession signature, the behavior of pinning events, and the temperature dependence of the precession.Comment: 8 pages, 8 figure

    What do near-term observations tell us about long-term developments in greenhouse gas emissions? A letter

    Get PDF
    Long-term scenarios developed by integrated assessment models are used in climate research to provide an indication of plausible long-term emissions of greenhouse gases and other radiatively active substances based on developments in the global energy system, land-use and the emissions associated with these systems The phenomena that determine these long-term developments (several decades or even centuries) are very different than those that operate on a shorter time-scales (a few years) Nevertheless, in the literature, we still often find direct comparisons between short-term observations and long-term developments that do not take into account the differing dynamics over these time scales In this letter, we discuss some of the differences between the factors that operate in the short term and those that operate in the long term We use long-term historical emissions trends to show that short-term observations are very poor indicators of long-term future emissions developments Based on this, we conclude that the performance of long-term scenarios should be evaluated against the appropriate, corresponding long-term variables and trends The research community may facilitate this by developing appropriate data sets and protocols that can be used to test the performance of long-term scenarios and the models that produce the

    The calibration of the Sudbury Neutrino Observatory using uniformly distributed radioactive sources

    Full text link
    The production and analysis of distributed sources of 24Na and 222Rn in the Sudbury Neutrino Observatory (SNO) are described. These unique sources provided accurate calibrations of the response to neutrons, produced through photodisintegration of the deuterons in the heavy water target, and to low energy betas and gammas. The application of these sources in determining the neutron detection efficiency and response of the 3He proportional counter array, and the characteristics of background Cherenkov light from trace amounts of natural radioactivity is described.Comment: 24 pages, 13 figure

    Anisotropy at the end of the cosmic ray spectrum?

    Full text link
    The starburst galaxies M82 and NGC253 have been proposed as the primary sources of cosmic rays with energies above 1018.710^{18.7} eV. For energies \agt 10^{20.3} eV the model predicts strong anisotropies. We calculate the probabilities that the latter can be due to chance occurrence. For the highest energy cosmic ray events in this energy region, we find that the observed directionality has less than 1% probability of occurring due to random fluctuations. Moreover, during the first 5 years of operation at Auger, the observation of even half the predicted anisotropy has a probability of less than 10−510^{-5} to occur by chance fluctuation. Thus, this model can be subject to test at very small cost to the Auger priors budget and, whatever the outcome of that test, valuable information on the Galactic magnetic field will be obtained.Comment: Final version to be published in Physical Review

    Rotating inclined cylinder and the effect of the tilt angle on vortices

    Full text link
    We study numerically some possible vortex configurations in a rotating cylinder that is tilted with respect to the rotation axis and where different numbers of vortices can be present at given rotation velocity. In a long cylinder at small tilt angles the vortices tend to align along the cylinder axis and not along the rotation axis. We also show that the axial flow along the cylinder axis, caused by the tilt, will result in the Ostermeier-Glaberson instability above some critical tilt angle. When the vortices become unstable the final state often appears to be a dynamical steady state, which may contain turbulent regions where new vortices are constantly created. These new vortices push other vortices in regions with laminar flow towards the top and bottom ends of the cylinder where they finally annihilate. Experimentally the inclined cylinder could be a convenient environment to create long lasting turbulence with a polarization which can be adjusted with the tilt angle.Comment: 10 pages, 10 figure

    Role of surface roughness in hard x-ray emission from femtosecond laser produced copper plasmas

    Get PDF
    The hard x-ray emission in the energy range of 30-300 keV from copper plasmas produced by 100 fs, 806 nm laser pulses at intensities in the range of 1015−1016^{15}-10^{16} W cm−2^{-2} is investigated. We demonstrate that surface roughness of the targets overrides the role of polarization state in the coupling of light to the plasma. We further show that surface roughness has a significant role in enhancing the x-ray emission in the above mentioned energy range.Comment: 5 pages, 4 figures, to appear in Phys. Rev.

    The closest elastic tensor of arbitrary symmetry to an elasticity tensor of lower symmetry

    Get PDF
    The closest tensors of higher symmetry classes are derived in explicit form for a given elasticity tensor of arbitrary symmetry. The mathematical problem is to minimize the elastic length or distance between the given tensor and the closest elasticity tensor of the specified symmetry. Solutions are presented for three distance functions, with particular attention to the Riemannian and log-Euclidean distances. These yield solutions that are invariant under inversion, i.e., the same whether elastic stiffness or compliance are considered. The Frobenius distance function, which corresponds to common notions of Euclidean length, is not invariant although it is simple to apply using projection operators. A complete description of the Euclidean projection method is presented. The three metrics are considered at a level of detail far greater than heretofore, as we develop the general framework to best fit a given set of moduli onto higher elastic symmetries. The procedures for finding the closest elasticity tensor are illustrated by application to a set of 21 moduli with no underlying symmetry.Comment: 48 pages, 1 figur

    An ALMA survey of CO in submillimetre galaxies: companions, triggering, and the environment in blended sources

    Get PDF
    We present ALMA observations of the mid-J 12CO emission from six single-dish selected 870-μm sources in the Extended Chandra Deep Field-South and UKIDSS Ultra-Deep Survey fields. These six single-dish submillimetre sources were selected based on previous ALMA continuum observations, which showed that each comprised a blend of emission from two or more individual submillimetre galaxies (SMGs), separated on 5–10 arcsec scales. The six single-dish submillimetre sources targeted correspond to a total of 14 individual SMGs, of which seven have previously measured robust optical/near-infrared spectroscopic redshifts, which were used to tune our ALMA observations. We detect CO(3–2) or CO(4–3) at z = 2.3–3.7 in 7 of the 14 SMGs, and in addition serendipitously detect line emission from three gas-rich companion galaxies, as well as identify four new 3.3 mm selected continuum sources in the six fields. Joint analysis of our CO spectroscopy and existing data suggests that 64(±18)percent of the SMGs in blended submillimetre sources are unlikely to be physically associated. However, three of the SMG fields (50 per cent) contain new, serendipitously detected CO-emitting (but submillimetre-faint) sources at similar redshifts to the 870 μm selected SMGs we targeted. These data suggest that the SMGs inhabit overdense regions, but that these are not sufficiently overdense on ∼100 kpc scales to influence the source blending given the short lifetimes of SMGs. We find that 21±12percent of SMGs have spatially distinct and kinematically close companion galaxies (∼8–150 kpc and ≲ 300 km s−1), which may have enhanced their star formation via gravitational interactions
    • …
    corecore