925 research outputs found

    Advance Care Planning: A Story of Trust Within the Family.

    Get PDF
    As the family usually plays a central role at the end of life, the quality of family relationships may influence how individuals approach advance care planning (ACP). Our study investigates the associations of trust in relatives with regard to end-of-life (EOL) issues-used as a proxy measure of family relationship quality-with individuals' engagement in EOL discussions, advance directive (AD) awareness, approval and completion, and designation of a healthcare proxy. Using nationally representative data of adults aged 55 years and over from wave 6 (2015) of the Survey of Health, Ageing, and Retirement in Europe (SHARE) in Switzerland (n = 1911), we show that complete trust in relatives is related to higher engagement in ACP. Subject to patient consent, the family should, therefore, be included in the ACP process, as such practice could enhance patient-centered EOL care and quality of life at the end of life

    The Stepwise Reduction of Multiyear Sea Ice Area in the Arctic Ocean Since 1980

    Get PDF
    The loss of multiyear sea ice (MYI) in the Arctic Ocean is a significant change that affects all facets of the Arctic environment. Using a Lagrangian ice age product, we examine MYI loss and quantify the annual MYI area budget from 1980 to 2021 as the balance of export, melt, and replenishment. Overall, MYI area declined at 72,500 km2 /yr; however, a majority of the loss occurred during two stepwise reductions that interrupt an otherwise balanced budget and resulted in the northward contraction of the MYI pack. First, in 1989, a change in atmospheric forcing led to a +56% anomaly in MYI export through Fram Strait. The second occurred from 2006 to 2008 with anomalously high melt (+25%) and export (+23%) coupled with low replenishment (−8%). In terms of trends, melt has increased since 1989, particularly in the Beaufort Sea, export has decreased since 2008 due to reduced MYI coverage north of Fram Strait, and replenishment has increased over the full time series due to a negative feedback that promotes seasonal ice survival at higher latitudes exposed by MYI loss. However, retention of older MYI has significantly declined, transitioning the MYI pack toward younger MYI that is less resilient than previously anticipated and could soon elicit another stepwise reduction. We speculate that future MYI loss will be driven by increased melt and reduced replenishment, both of which are enhanced with continued warming and will one day render the Arctic Ocean free of MYI, a change that will coincide with a seasonally ice-free Arctic Ocean

    AlGaAs/GaAs/AlGaAs quantum wells as a sensitive tool for the MOVPE reactor environment

    Full text link
    We present in this work a simple Quantum Well (QW) structure consisting of GaAs wells with AlGaAs barriers as a probe for measuring the performance of arsine purifiers within a MetalOrganic Vapour Phase Epitaxy system. Comparisons between two different commercially available purifiers are based on the analysis of low temperature photoluminescence emission spectra from thick QWs, grown on GaAs substrates misoriented slightly from (100). Neutral excitons emitted from these structures show extremely narrow linewidths, comparable to those which can be obtained by Molecular Beam Epitaxy in an ultra-high vacuum environment, suggesting that purifications well below the 1ppb level are needed to achieve high quality quantum well growth

    Crystal structure of solid Oxygen at high pressure and low temperature

    Full text link
    Results of X-ray diffraction experiments on solid oxygen at low temperature and at pressures up to 10 GPa are presented.A careful sample preparation and annealing around 240 K allowed to obtain very good diffraction patterns in the orthorhombic delta-phase. This phase is stable at low temperature, in contrast to some recent data [Y. Akahama et al., Phys. Rev. B64, 054105 (2001)], and transforms with decreasing pressure into a monoclinic phase, which is identified as the low pressure alpha-phase. The discontinuous change of the lattice parameters, and the observed metastability of the alpha-phase increasing pressure suggest that the transition is of the first order.Comment: 4 pages with three figure

    Use of concentrated radiation for solar powered glass melting experiments

    Get PDF
    To investigate the feasibility of using concentrated solar radiation to provide process heat for glass production, a high flux solar simulator was used to melt glass forming batches. Initial experiments involved melting various glass forming batches which demonstrated that rapid and full conversion of the crystalline raw materials into an X-ray amorphous vitreous state was possible. A pure silica batch produced an X-ray amorphous product but it was not possible to refine the melt in these exploratory tests. A powdered, ternary soda-lime-silica (SLS) glass forming batch melted vigorously, with rapid gas removal, resulting in a completely transparent glass. Industrial SLS pellets were subsequently used in semi-continuous melting experiments, whereby the batch was intermittently fed into the melting zone while the beam was kept on. Additional secondary heating and insulation around outlet of the melting zone was required to achieve a semi-continuous flow of molten glass to an output crucible

    Age- and Sex-Specific Nomographic CT Quantitative Plaque Data From a Large International Cohort.

    Get PDF
    With growing adoption of coronary computed tomographic angiography (CTA), there is increasing evidence for and interest in the prognostic importance of atherosclerotic plaque volume. Manual tools for plaque segmentation are cumbersome, and their routine implementation in clinical practice is limited. The aim of this study was to develop nomographic quantitative plaque values from a large consecutive multicenter cohort using coronary CTA. Quantitative assessment of total atherosclerotic plaque and plaque subtype volumes was performed in patients undergoing clinically indicated coronary CTA, using an Artificial Intelligence-Enabled Quantitative Coronary Plaque Analysis tool. A total of 11,808 patients were included in the analysis; their mean age was 62.7 ± 12.2 years, and 5,423 (45.9%) were women. The median total plaque volume was 223 mm <sup>3</sup> (IQR: 29-614 mm <sup>3</sup> ) and was significantly higher in male participants (360 mm <sup>3</sup> ; IQR: 78-805 mm <sup>3</sup> ) compared with female participants (108 mm <sup>3</sup> ; IQR: 10-388 mm <sup>3</sup> ) (P < 0.0001). Total plaque increased with age in both male and female patients. Younger patients exhibited a higher prevalence of noncalcified plaque. The distribution of total plaque volume and its components was reported in every decile by age group and sex. The authors developed pragmatic age- and sex-stratified percentile nomograms for atherosclerotic plaque measures using findings from coronary CTA. The impact of age and sex on total plaque and its components should be considered in the risk-benefit analysis when treating patients. Artificial Intelligence-Enabled Quantitative Coronary Plaque Analysis work flows could provide context to better interpret coronary computed tomographic angiographic measures and could be integrated into clinical decision making

    Atomic diffraction from nanostructured optical potentials

    Full text link
    We develop a versatile theoretical approach to the study of cold-atom diffractive scattering from light-field gratings by combining calculations of the optical near-field, generated by evanescent waves close to the surface of periodic nanostructured arrays, together with advanced atom wavepacket propagation on this optical potential.Comment: 8 figures, 10 pages, submitted to Phys. Rev.

    Magnetization steps in a diluted Heisenberg antiferromagnetic chain: Theory and experiments on TMMC:Cd

    Full text link
    A theory for the equilibrium low-temperature magnetization M of a diluted Heisenberg antiferromagnetic chain is presented. The magnetization curve, M versus B, is calculated using the exact contributions of finite chains with 1 to 5 spins, and the "rise and ramp approximation" for longer chains. Some non-equilibrium effects that occur in a rapidly changing B, are also considered. Specific non-equilibrium models based on earlier treatments of the phonon bottleneck, and of spin flips associated with cross relaxation and with level crossings, are discussed. Magnetization data on powders of TMMC diluted with cadmium [i.e., (CH_3)_4NMn_xCd_(1-x)Cl_3, with 0.16<=x<=0.50 were measured at 0.55 K in 18 T superconducting magnets. The field B_1 at the first MST from pairs is used to determine the NN exchange constant, J, which changes from -5.9 K to -6.5 K as x increases from 0.16 to 0.50. The magnetization curves obtained in the superconducting magnets are compared with simulations based on the equilibrium theory. Data for the differential susceptibility, dM/dB, were taken in pulsed magnetic fields (7.4 ms duration) up to 50 T, with the powder samples in a 1.5 K liquid-helium bath. Non-equilibrium effects, which became more severe as x decreased, were observed. The non-equilibrium effects are tentatively interpreted using the "Inadequate Heat Flow Scenario," or to cross-relaxation, and crossings of energy levels, including those of excited states.Comment: 16 pages, 14 figure

    A Hybrid Model for Dynamic Simulation of Custom Software Projects in a Multiproject Environment

    Get PDF
    This paper describes SimHiProS, a hybrid simulation model of software production. The goal is to gain insight on the dynamics induced by resource sharing in multiproject management. In order to achieve it the hierarchy of decisions in a multiproject organization is modeled and some resource allocation methods based on algorithms from the OR/AI domain are used. Other critical issues such as the hybrid nature of software production and the effects of measurement and control are also incorporated in the model. Some first results are presented.Ministerio de Ciencia e Innovación TIN2004-06689-C03-03Ministerio de Ciencia e Innovación TIN2007-67843-C06-0

    New method for true-triaxial rock testing

    Get PDF
    Two new and related true-triaxial apparatus are described that make use of conventional triaxial pressure vessels in combination with specially configured, high-pressure hydraulic jacks inside these vessels. The development combines advantages not found in existing facilities, including a compact design, pore-pressure and flow-through capabilities, the ability to attain high principal stresses and principal stress differences, direct access to parts of the sample, and provisions to go to relatively large deformations without developing serious stress field inhomogeneities
    corecore