35 research outputs found

    The interaction between transpolar arcs and cusp spots

    No full text
    Transpolar arcs and cusp spots are both auroral phenomena which occur when the interplanetary magnetic field is northward. Transpolar arcs are associated with magnetic reconnection in the magnetotail, which closes magnetic flux and results in a “wedge” of closed flux which remains trapped, embedded in the magnetotail lobe. The cusp spot is an indicator of lobe reconnection at the high-latitude magnetopause; in its simplest case, lobe reconnection redistributes open flux without resulting in any net change in the open flux content of the magnetosphere. We present observations of the two phenomena interacting—i.e., a transpolar arc intersecting a cusp spot during part of its lifetime. The significance of this observation is that lobe reconnection can have the effect of opening closed magnetotail flux. We argue that such events should not be rare

    Convection in the Magnetosphere-Ionosphere System:a Multi-Mission Survey of its Response to IMF By Reversals

    Get PDF
    Past studies have demonstrated that the interplanetary magnetic field (IMF) By component introduces asymmetries in the magnetosphere‐ionosphere (M‐I) system, though the exact timings involved are still unclear with two distinct mechanisms proposed. In this study, we statistically analyze convective flows from three regions of the M‐I system: the magnetospheric lobes, the plasma sheet, and the ionosphere. We perform superposed epoch analyses on the convective flows in response to reversals in the IMF By  orientation, to determine the flow response timescales of these regions. We find that the lobes respond quickly and reconfigure to the new IMF By  state within 30–40 min. The plasma sheet flows, however, do not show a clear response to the IMF By  reversal, at least within 4 hr postreversal. The ionospheric data, measured by the Super Dual Auroral Radar Network (SuperDARN), match their counterpart magnetospheric flows, with clear and prompt responses at ≄75° magnetic latitude (MLAT) but a less pronounced response at 60–70 MLAT. We discuss the potential implication of these results on the mechanisms for introducing the IMF By  component into the M‐I system

    Multiscale observation of two polar cap arcs occurring on different magnetic field topologies

    Get PDF
    This paper presents observations of polar cap arc substructure down to scale sizes of meters and temporal resolution of milliseconds. Two case studies containing polar cap arcs occurring over Svalbard are investigated. The first occurred on 4 February 2016 and is consistent with formation on closed field lines; the second occurred on 15 December 2015 and is consistent with formation on open field lines. These events were identified using global‐scale images from the Special Sensor Ultra‐violet Spectrographic Imager (SSUSI) instruments on board Defense Meteorological Satellite Program (DMSP) spacecraft. Intervals when the arcs passed through the small‐scale field of view of the Auroral Structure and Kinetics (ASK) instrument, located on Svalbard, were then found using all sky images from a camera also located on Svalbard. These observations give unprecedented insight into small‐scale polar cap arc structure. The energy and flux of the precipitating particles above these arcs are estimated using the ASK observations in conjunction with the Southampton Ionospheric model. These estimates are then compared to in situ DMSP particle measurements, as well as data from ground‐based instrumentation, to infer further information about their formation mechanisms. This paper finds that polar cap arcs formed on different magnetic field topologies exhibit different behavior at small‐scale sizes, consistent with their respective formation mechanisms

    Transpolar arc observation after solar wind entry into the high-latitude magnetosphere

    No full text
    Recently, Cluster observations have revealed the presence of new regions of solar wind plasma entry at the high-latitude magnetospheric lobes tailward of the cusp region, mostly during periods of northward interplanetary magnetic field. In this study, observations from the Global Ultraviolet Imager (GUVI) experiment on board the TIMED spacecraft and Wideband Imaging Camera imager on board the IMAGE satellite are used to investigate a possible link between solar wind entry and the formation of transpolar arcs in the polar cap. We focus on a case when transpolar arc formation was observed twice right after the two solar wind entry events were detected by the Cluster spacecraft. In addition, GUVI and IMAGE observations show a simultaneous occurrence of auroral activity at low and high latitudes after the second entry event, possibly indicating a two-part structure of the continuous band of the transpolar arc

    Properties of Magnetic Reconnection and FTEs on the Dayside Magnetopause With and Without Positive IMF B-x Component During Southward IMF

    Get PDF
    This paper describes properties and behavior of magnetic reconnection and flux transfer events (FTEs) on the dayside magnetopause using the global hybrid-Vlasov code Vlasiator. We investigate two simulation runs with and without a sunward (positive)B-x component of the interplanetary magnetic field (IMF) when the IMF is southward. The runs are two-dimensional in real space in the noon-midnight meridional (polar) plane and three-dimensional in velocity space. Solar wind input parameters are identical in the two simulations with the exception that the IMF is purely southward in one but tilted 45 degrees toward the Sun in the other. In the purely southward case (i.e., without B-x) the magnitude of the magnetos heath magnetic field component tangential to the magnetopause is larger than in the run with a sunward tilt. This is because the shock normal is perpendicular to the IMF at the equatorial plane, whereas in the other run the shock configuration is oblique and a smaller fraction of the total IMF strength is compressed at the shock crossing. Hence, the measured average and maximum reconnection rate are larger in the purely southward run. The run with tilted IMF also exhibits a north-south asymmetry in the tangential magnetic field caused by the different angle between the IMF and the bow shock normal north and south of the equator. Greater north-south asymmetries are seen in the FTE occurrence rate, size, and velocity as well; FTEs moving toward the Southern Hemisphere are larger in size and observed less frequently than FTEs in the Northern Hemisphere.Peer reviewe

    The Scientific Foundations of Forecasting Magnetospheric Space Weather

    Get PDF
    The magnetosphere is the lens through which solar space weather phenomena are focused and directed towards the Earth. In particular, the non-linear interaction of the solar wind with the Earth's magnetic field leads to the formation of highly inhomogenous electrical currents in the ionosphere which can ultimately result in damage to and problems with the operation of power distribution networks. Since electric power is the fundamental cornerstone of modern life, the interruption of power is the primary pathway by which space weather has impact on human activity and technology. Consequently, in the context of space weather, it is the ability to predict geomagnetic activity that is of key importance. This is usually stated in terms of geomagnetic storms, but we argue that in fact it is the substorm phenomenon which contains the crucial physics, and therefore prediction of substorm occurrence, severity and duration, either within the context of a longer-lasting geomagnetic storm, but potentially also as an isolated event, is of critical importance. Here we review the physics of the magnetosphere in the frame of space weather forecasting, focusing on recent results, current understanding, and an assessment of probable future developments.Peer reviewe

    The Earth: Plasma Sources, Losses, and Transport Processes

    Get PDF
    This paper reviews the state of knowledge concerning the source of magnetospheric plasma at Earth. Source of plasma, its acceleration and transport throughout the system, its consequences on system dynamics, and its loss are all discussed. Both observational and modeling advances since the last time this subject was covered in detail (Hultqvist et al., Magnetospheric Plasma Sources and Losses, 1999) are addressed

    Ground-based and additional science support for SMILE

    Get PDF
    The joint European Space Agency and Chinese Academy of Sciences Solar wind Magnetosphere Ionosphere Link Explorer (SMILE) mission will explore global dynamics of the magnetosphere under varying solar wind and interplanetary magnetic field conditions, and simultaneously monitor the auroral response of the Northern Hemisphere ionosphere. Combining these large-scale responses with medium and fine-scale measurements at a variety of cadences by additional ground-based and space-based instruments will enable a much greater scientific impact beyond the original goals of the SMILE mission. Here, we describe current community efforts to prepare for SMILE, and the benefits and context various experiments that have explicitly expressed support for SMILE can offer. A dedicated group of international scientists representing many different experiment types and geographical locations, the Ground-based and Additional Science Working Group, is facilitating these efforts. Preparations include constructing an online SMILE Data Fusion Facility, the discussion of particular or special modes for experiments such as coherent and incoherent scatter radar, and the consideration of particular observing strategies and spacecraft conjunctions. We anticipate growing interest and community engagement with the SMILE mission, and we welcome novel ideas and insights from the solar-terrestrial community

    Direct observation of closed magnetic flux trapped in the high-latitude magnetosphere

    No full text
    The structure of Earth’s magnetosphere is poorly understood when the interplanetary magnetic field is northward. Under this condition, uncharacteristically energetic plasma is observed in the magnetotail lobes, which is not expected in the textbook model of the magnetosphere. Using satellite observations, we show that these lobe plasma signatures occur on high-latitude magnetic field lines that have been closed by the fundamental plasma process of magnetic reconnection. Previously, it has been suggested that closed flux can become trapped in the lobe and that this plasma-trapping process could explain another poorly understood phenomenon: the presence of auroras at extremely high latitudes, called transpolar arcs. Observations of the aurora at the same time as the lobe plasma signatures reveal the presence of a transpolar arc. The excellent correspondence between the transpolar arc and the trapped closed flux at high altitudes provides very strong evidence of the trapping mechanism as the cause of transpolar arcs
    corecore