18 research outputs found

    Oxidative Phosphorylation Fueled by Fatty Acid Oxidation Sensitizes Leukemic Stem Cells to Cold

    Get PDF
    Dependency on mitochondrial oxidative phosphorylation (OxPhos) is a potential weakness for leukemic stem cells (LSC) that can be exploited for therapeutic purposes. Fatty acid oxidation (FAO) is a crucial OxPhos-fueling catabolic pathway for some acute myeloid leukemia (AML) cells, particularly chemotherapy-resistant AML cells. Here, we identified cold sensitivity at 4◩C (cold killing challenge; CKC4), commonly used for sample storage, as a novel vulnerability that selectively kills AML LSCs with active FAO-supported OxPhos while sparing normal hematopoietic stem cells. Cell death of OxPhos-positive leukemic cells was induced by membrane permeabilization at 4◩C; by sharp contrast, leukemic cells relying on glycolysis were resistant. Forcing glycolytic cells to activate OxPhos metabolism sensitized them to CKC4. Lipidomic and proteomic analyses showed that OxPhos shapes the composition of the plasma membrane and introduces variation of 22 lipid subfamilies between cold-sensitive and cold-resistant cells. Together, these findings indicate that steady-state energy metabolism at body temperature predetermines the sensitivity of AML LSCs to cold temperature, suggesting that cold sensitivity could be a potential OxPhos biomarker. These results could have important implications for designing experiments for AML research to avoid cell storage at 4◩C.</p

    The ROS/SUMO Axis Contributes to the Response of Acute Myeloid Leukemia Cells to Chemotherapeutic Drugs

    Get PDF
    Chemotherapeutic drugs used in the treatment of acute myeloid leukemias (AMLs) are thought to induce cancer cell death through the generation of DNA double-strand breaks. Here, we report that one of their early effects is the loss of conjugation of the ubiquitin-like protein SUMO from its targets via reactive oxygen species (ROS)-dependent inhibition of the SUMO-conjugating enzymes. Desumoylation regulates the expression of specific genes, such as the proapoptotic gene DDIT3, and helps induce apoptosis in chemosensitive AMLs. In contrast, chemotherapeutics do not activate the ROS/SUMO axis in chemoresistant cells. However, pro-oxidants or inhibition of the SUMO pathway by anacardic acid restores DDIT3 expression and apoptosis in chemoresistant cell lines and patient samples, including leukemic stem cells. Finally, inhibition of the SUMO pathway decreases tumor growth in mice xenografted with AML cells. Thus, targeting the ROS/SUMO axis might constitute a therapeutic strategy for AML patients resistant to conventional chemotherapies

    CD34+CD38−CD123+ Leukemic Stem Cell Frequency Predicts Outcome in Older Acute Myeloid Leukemia Patients Treated by Intensive Chemotherapy but Not Hypomethylating Agents

    No full text
    The prognostic impact of immunophenotypic CD34+CD38&minus;CD123+ leukemic stem cell (iLSC) frequency at diagnosis has been demonstrated in younger patients treated by intensive chemotherapy, however, this is less clear in older patients. Furthermore, the impact of iLSC in patients treated by hypomethylating agents is unknown. In this single-center study, we prospectively assessed the CD34+CD38&minus;CD123+ iLSC frequency at diagnosis in acute myeloid leukemia (AML) patients aged 60 years or older. In a cohort of 444 patients, the median percentage of iLSC at diagnosis was 4.3%. Significant differences were found between treatment groups with a lower median in the intensive chemotherapy group (0.6%) compared to hypomethylating agents (8.0%) or supportive care (11.1%) (p &lt;0.0001). In the intensive chemotherapy group, the median overall survival was 34.5 months in patients with iLSC &le;0.10% and 14.6 months in patients with &gt;0.10% (p = 0.031). In the multivariate analyses of this group, iLSC frequency was significantly and independently associated with the incidence of relapse, event-free, relapse-free, and overall survival. However, iLSC frequency had no prognostic impact on patients treated by hypomethylating agents. Thus, the iLSC frequency at diagnosis is an independent prognostic factor in older acute myeloid patients treated by intensive chemotherapy but not hypomethylating agents

    Dendrogenin A Synergizes with Cytarabine to Kill Acute Myeloid Leukemia Cells In Vitro and In Vivo

    No full text
    International audienceDendrogenin A (DDA) is a mammalian cholesterol metabolite that displays potent antitumor properties on acute myeloid leukemia (AML). DDA triggers lethal autophagy in cancer cells through a biased activation of the oxysterol receptor LXRÎČ, and the inhibition of a sterol isomerase. We hypothesize that DDA could potentiate the activity of an anticancer drug acting through a different molecular mechanism, and conducted in vitro and in vivo combination tests on AML cell lines and patient primary tumors. We report here results from tests combining DDA with antimetabolite cytarabine (Ara-C), one of the main drugs used for AML treatment worldwide. We demonstrated that DDA potentiated and sensitized AML cells, including primary patient samples, to Ara-C in vitro and in vivo. Mechanistic studies revealed that this sensitization was LXRÎČ-dependent and was due to the activation of lethal autophagy. This study demonstrates a positive in vitro and in vivo interaction between DDA and Ara-C, and supports the clinical evaluation of DDA in combination with Ara-C for the treatment of AML

    Real-World Outcomes of Patients with Refractory or Relapsed FLT3-ITD Acute Myeloid Leukemia: A Toulouse-Bordeaux DATAML Registry Study

    No full text
    Two recent phase 3 trials showed that outcomes for relapsed/refractory (R/R) FLT3-mutated acute myeloid leukemia (AML) patients may be improved by a single-agent tyrosine kinase inhibitor (TKI) (i.e., quizartinib or gilteritinib). In the current study, we retrospectively investigated the characteristics and real-world outcomes of R/R FLT3-internal tandem duplication (ITD) acute myeloid leukemia (AML) patients in the Toulouse-Bordeaux DATAML registry. In the study, we included 316 patients with FLT3-ITD AML that received intensive chemotherapy as a first-line treatment. The rate of complete remission (CR) or CR without hematological recovery (CRi) was 75.2%, and 160 patients were R/R after a first-line TKI-free treatment (n = 294). Within the subgroup of R/R patients that fulfilled the main criteria of the QUANTUM-R study, 48.9% received an intensive salvage regimen; none received hypomethylating agents or low-dose cytarabine. Among the R/R FLT3-ITD AML patients with CR1 durations &lt; 6 months who received intensive TKI-free treatment, the rate of CR or CRi after salvage chemotherapy was 52.8%, and these results allowed a bridge to be transplanted in 39.6% of cases. Finally, in this QUANTUM-R standard arm-matched cohort, the median overall survival (OS) was 7.0 months and 1-, 3- and 5-year OS were 30.2%, 23.7% and 21.4%, respectively. To conclude, these real-world data show that the intensity of the second-line treatment likely affects response and transplantation rates. Furthermore, the results indicate that including patients with low-intensity regimens, such as low-dose cytarabine or hypomethylating agents, in the control arm of a phase 3 trial may be counterproductive and could compromise the results of the study
    corecore