24 research outputs found

    Temporal and vertical variations of aerosol physical and chemical properties over West Africa: AMMA aircraft campaign in summer 2006

    Get PDF
    While the Sahelian belt in West Africa stretches in the border between the global hot-spots of mineral dust and biomass burning aerosols, the presence of West African Monsoon is expected to create significant vertical and temporal variations in the regional aerosol properties through transport and mixing of particles from various sources (mineral dust, biomass burning, sulfates, sea salt). In order to improve our understanding of the evolution of the aerosol-cloud system over such region across the onset of the summer monsoon, the French ATR-42 research aircraft was deployed in Niamey, Niger (13°30' N, 02°05' E) in summer 2006, during the three special observation periods (SOPs) of the African Monsoon Multidisciplinary Analysis (AMMA) project. These three SOPs covered both dry and wet periods before and after the onset of the Western African Monsoon. <br><br> State of the art physico-chemical aerosol measurements on the ATR-42 showed a notable seasonal transition in averaged number size distributions where (i) the Aitken mode is dominating over the accumulation mode during the dry season preceding the monsoon arrival and (ii) the accumulation mode increasingly gained importance after the onset of the West African monsoon and even dominated the Aitken mode after the monsoon had fully developed. The parameters for the mean log-normal distributions observed in respective layers characterized by the different wind regimes (monsoon layer, SAL, free troposphere) are presented, together with the major particle compositions found in the accumulation mode particles. Thereby, results of this study should facilitate radiative transfer calculations, validation of satellite remote sensors, and detailed transport modeling by partners within and outside the AMMA community. <br><br> Extended analysis of the chemical composition of single aerosol particles by a transmission electron microscope (TEM) coupled to an energy dispersive X-ray spectrometer (EDX) revealed dominance of mineral dust (aluminosilicate) even in the submicron particle size range during the dry period, gradually replaced by prevailing biomass burning and sulfate particles, after the onset of the monsoon period. The spatial and temporal evolution from SOP1 to SOP2a1 and SOP2a2 of the particle physical and chemical properties and associated aerosol hygroscopic properties are remarkably consistent

    Airborne measurements of aerosol optical properties related to early spring transport of mid-latitude sources into the Arctic

    Get PDF
    Airborne lidar and in-situ measurements of the aerosol properties were conducted between Svalbard Island and Scandinavia in April 2008. Evidence of aerosol transport from Europe and Asia is given. The analysis of the aerosol optical properties based on a multiwavelength lidar (355, 532, 1064 nm) including volume depolarization at 355 nm aims at distinguishing the role of the different aerosol sources (Siberian wild fires, Eastern Asia and European anthropogenic emissions). Combining, first aircraft measurements, second FLEXPART simulations with a calculation of the PBL air fraction originating from the three different mid-latitude source regions, and third level-2 CALIPSO data products (i.e. backscatter coefficient 532 nm,volume depolarization and color ratio between 1064 and 532 nm in aerosol layers) along the transport pathways, appears a valuable approach to identify the role of the different aerosol sources even after a transport time larger than 4 days. Optical depth of the aerosol layers are always rather small (<4%) while transported over the Arctic and ratio of the total attenuated backscatter (i.e. including molecular contribution) provide more stable result than conventional aerosol backscatter ratio. Above Asia, CALIPSO data indicate more depolarization (up to 15%) and largest color ratio (>0.5) for the northeastern Asia emissions (i.e. an expected mixture of Asian pollution and dust), while low depolarization together with smaller and quasi constant color ratio (≈0.3) are observed for the Siberian biomass burning emissions. A similar difference is visible between two layers observed by the aircraft above Scandinavia. The analysis of the time evolution of the aerosol optical properties revealed by CALIPSO between Asia and Scandinavia shows a gradual decrease of the aerosol backscatter, depolarization ratio and color ratio which suggests the removal of the largest particles in the accumulation mode. A similar study conducted for a European plume has shown aerosol optical properties intermediate between the two Asian sources with color ratio never exceeding 0.4 and moderate depolarization ratio being always less than 8%, i.e. less aerosol from the accumulation mode

    Source identification and airborne chemical characterisation of aerosol pollution from long-range transport over Greenland during POLARCAT summer campaign 2008

    Get PDF
    We deployed an aerosol mass spectrometer during the POLARCAT (Polar Study using Aircraft, Remote Sensing, Surface Measurements and Models, of Climate, Chemistry, Aerosols, and Transport) summer campaign in Greenland in June/July 2008 on the research aircraft ATR-42. Online size resolved chemical composition data of submicron aerosol were collected up to 7.6 km altitude in the region 60 to 71� N and 40 to 60�W. Biomass burning (BB) and fossil fuel combustion (FF) plumes originating from North America, Asia, Siberia and Europe were sampled. Transport pathways of detected plumes included advection below 700 hPa, air mass uplifting in warm conveyor belts, and high altitude transport in the upper troposphere. By means of the Lagrangian particle dispersion model FLEXPART, trace gas analysis of O3 and CO, particle size distributions and aerosol chemical composition 48 pollution events were identified and classified into five chemically distinct categories. Aerosol from North American BB consisted of 22% particulate sulphate, while with increasing anthropogenic and Asian influence aerosol in Asian FF dominated plumes was composed of up to 37% sulphate category mean value. Overall, it was found that the organic matter fraction was larger (85 %) in pollution plumes than for background conditions (71 %). Despite different source regions and emission types the particle oxygen to carbon ratio of all plume classes was around 1 indicating low-volatility highly oxygenated aerosol. The volume size distribution of out-of-plume aerosol showed markedly smaller modes than all other distributions with two Aitken mode diameters of 24 and 43 nm and a geometric standard deviation �g of 1.12 and 1.22, respectively, while another very broad mode was found at 490 nm (�g =2.35). Nearly pure BB particles from North America exhibited an Aitken mode at 66 nm (�g =1.46) and an accumulation mode diameter of 392 nm (�g =1.76). An aerosol lifetime, including all processes from emission to detection, in the range between 7 and 11 days was derived for North American emissions

    New insights into the atmospheric mercury cycling in central Antarctica and implications on a continental scale

    No full text
    Under the framework of the GMOS project (Global Mercury Observation System) atmospheric mercury monitoring has been implemented at Concordia Station on the high-altitude Antarctic plateau (75°06′ S, 123°20′ E, 3220 m above sea level). We report here the first year-round measurements of gaseous elemental mercury (Hg(0)) in the atmosphere and in snowpack interstitial air on the East Antarctic ice sheet. This unique data set shows evidence of an intense oxidation of atmospheric Hg(0) in summer (24-hour daylight) due to the high oxidative capacity of the Antarctic plateau atmosphere in this period of the year. Summertime Hg(0) concentrations exhibited a pronounced daily cycle in ambient air with maximal concentrations around midday. Photochemical reactions and chemical exchange at the air–snow interface were prominent, highlighting the role of the snowpack on the atmospheric mercury cycle. Our observations reveal a 20 to 30 % decrease of atmospheric Hg(0) concentrations from May to mid-August (winter, 24 h darkness). This phenomenon has not been reported elsewhere and possibly results from the dry deposition of Hg(0) onto the snowpack. We also reveal the occurrence of multi-day to weeklong atmospheric Hg(0) depletion events in summer, not associated with depletions of ozone, and likely due to a stagnation of air masses above the plateau triggering an accumulation of oxidants within the shallow boundary layer. Our observations suggest that the inland atmospheric reservoir is depleted in Hg(0) in summer. Due to katabatic winds flowing out from the Antarctic plateau down the steep vertical drops along the coast and according to observations at coastal Antarctic stations, the striking reactivity observed on the plateau most likely influences the cycle of atmospheric mercury on a continental scale

    Physical and chemical properties of pollution aerosol particles transported from North America to Greenland as measured during the POLARCAT summer campaign

    No full text
    Within the framework of the POLARCAT-France campaign, aerosol physical, chemical and optical properties over Greenland were measured onboard the French ATR-42 research aircraft. The origins of CO excess peaks detected in the aircraft measurements then have been identified through FLEXPART simulations. The study presented here focuses particularly on the characterization of air masses transported from the North American continent to Greenland. Air masses that picked up emissions from Canadian boreal forest fires as well as from the cities on the American east coast were identified and selected for a detailed study. Measurements of CO concentrations, aerosol chemical composition, aerosol number size distributions, aerosol volume volatile fractions and aerosol light absorption (mainly from black carbon) are used in order to study the relationship between CO enhancement (ΔCO), aerosol particle concentrations and number size distributions. Aerosol number size distributions (normalised with their respective ΔCO) are in good agreement with previous studies. Nonetheless, wet scavenging may have occurred along the pathway between the emission sources and Greenland leading to a less pronounced accumulation mode in the POLARCAT data. Chemical analyses from mass spectrometry show that submicrometer aerosol particles are mainly composed of sulphate and organics. The observed bimodal (Aitken and accumulation) aerosol number size distributions show a significant enhancement in Aitken mode particles. Furthermore, results from the thermodenuder analysis demonstrate the external mixture of boreal fire (BF) air masses from North America (NA). This is particularly observed in the accumulation mode, containing a volume fraction of up to 25–30% of refractory material at the applied temperature of 280 °C. NA anthropogenic air masses with only 6% refractory material in the accumulation mode can be clearly distinguished from BF air masses. Overall, during the campaign rather small amounts of black carbon from the North American continent were transported towards Greenland during the summer POLARCAT observation period, which also is a valuable finding with respect to potential climate impacts of black carbon in the Arctic

    East Asian Monsoon and Tropospheric Ozone from IASI/MetOp

    No full text
    International audienceAs an important greenhouse gas and air pollutant in the troposphere, monitoring of tropospheric ozone (O3) is essential to understand its impact on air quality, chemical composition and climate. In this presentation, two independent studies using O3 measurements from the Infrared atmospheric Sounding Interferometer (IASI) are presented. First, sensitivity studies are performed to investigate the origin of the systematic IASI O3 positive bias with respect to independent observations, which is reported in the literature. Second, the East Asian monsoon variability is assessed using six years of IASI tropospheric O3 columns. The study shows the ability of the instrument to detect the effect of the monsoon on the tropospheric ozone column and to reproduce the strength of the monsoon from one year to the other. Focusing on the period of May-August 2011, the WRF-Chem model is used at the surface and in the troposphere in conjunction with IASI to assess the meteorological and dynamical effects during the monsoon period on the tropospheric ozone column
    corecore