58 research outputs found

    Was Planet 9 captured in the Sun’s natal star-forming region?

    Get PDF
    The presence of an unseen ‘Planet 9’ on the outskirts of the Solar system has been invoked to explain the unexpected clustering of the orbits of several Edgeworth–Kuiper Belt Objects. We use N-body simulations to investigate the probability that Planet 9 was a free-floating planet (FFLOP) that was captured by the Sun in its birth star formation environment. We find that only 1–6 per cent of FFLOPs are ensnared by stars, even with the most optimal initial conditions for capture in star-forming regions (one FFLOP per star, and highly correlated stellar velocities to facilitate capture). Depending on the initial conditions of the star-forming regions, only 5–10 of 10 000 planets are captured on to orbits that lie within the constraints for Planet 9. When we apply an additional environmental constraint for Solar system formation – namely the injection of short-lived radioisotopes into the Sun’s protoplanetary disc from supernovae – we find the probability for the capture of Planet 9 to be almost zero

    Mass segregation in star clusters is not energy equipartition

    Get PDF
    Mass segregation in star clusters is often thought to indicate the onset of energy equipartition, where the most massive stars impart kinetic energy to the lower-mass stars and brown dwarfs/free floating planets. The predicted net result of this is that the centrally concentrated massive stars should have significantly lower velocities than fast-moving low-mass objects on the periphery of the cluster. We search for energy equipartition in initially spatially and kinematically substructured N-body simulations of star clusters with N = 1500 stars, evolved for 100 Myr. In clusters that show significant mass segregation we find no differences in the proper motions or radial velocities as a function of mass. The kinetic energies of all stars decrease as the clusters relax, but the kinetic energies of the most massive stars do not decrease faster than those of lower-mass stars. These results suggest that dynamical mass segregation -- which is observed in many star clusters -- is not a signature of energy equipartition from two-body relaxation

    Disks around T Tauri Stars with SPHERE (DARTTS-S):I. SPHERE/IRDIS Polarimetric Imaging of Eight Prominent T Tauri Disks

    Get PDF
    We present the first part of our DARTTS-S (Disks ARound TTauri Stars with SPHERE) survey: Observations of 8 TTauri stars which were selected based on their strong (sub-)mm excesses using SPHERE / IRDIS polarimetric differential imaging (PDI) in the J and H bands. All observations successfully detect the disks, which appear vastly different in size, from ≈\approx80 au in scattered light to >>400 au, and display total polarized disk fluxes between 0.06% and 0.89% of the stellar flux. For five of these disks, we are able to determine the three-dimensional structure and the flaring of the disk surface, which appears to be relatively consistent across the different disks, with flaring exponents α\alpha between ≈\approx1.1 and ≈\approx1.6. We also confirm literature results w.r.t. the inclination and position angle of several of our disk, and are able to determine which side is the near side of the disk in most cases. While there is a clear trend of disk mass with stellar ages (≈\approx1 Myr to >>10 Myr), no correlations of disk structures with age were found. There are also no correlations with either stellar mass or sub-mm flux. We do not detect significant differences between the J and H bands. However, we note that while a high fraction (7/8) of the disks in our sample show ring-shaped sub-structures, none of them display spirals, in contrast to the disks around more massive Herbig Ae/Be stars, where spiral features are common.Comment: 31 pages, 12 figure

    High-contrast imaging constraints on gas giant planet formation - The Herbig Ae/Be star opportunity

    Full text link
    Planet formation studies are often focused on solar-type stars, implicitly considering our Sun as reference point. This approach overlooks, however, that Herbig Ae/Be stars are in some sense much better targets to study planet formation processes empirically, with their disks generally being larger, brighter and simply easier to observe across a large wavelength range. In addition, massive gas giant planets have been found on wide orbits around early type stars, triggering the question if these objects did indeed form there and, if so, by what process. In the following I briefly review what we currently know about the occurrence rate of planets around intermediate mass stars, before discussing recent results from Herbig Ae/Be stars in the context of planet formation. The main emphasis is put on spatially resolved polarized light images of potentially planet forming disks and how these images - in combination with other data - can be used to empirically constrain (parts of) the planet formation process. Of particular interest are two objects, HD100546 and HD169142, where, in addition to intriguing morphological structures in the disks, direct observational evidence for (very) young planets has been reported. I conclude with an outlook, what further progress we can expect in the very near future with the next generation of high-contrast imagers at 8-m class telescopes and their synergies with ALMA.Comment: Accepted by Astrophysics and Space Science as invited short review in special issue about Herbig Ae/Be stars; 12 pages incl. 5 figures, 2 tables and reference
    • …
    corecore