35 research outputs found

    Solar magnetism eXplorer (SolmeX)

    Get PDF
    The magnetic field plays a pivotal role in many fields of Astrophysics. This is especially true for the physics of the solar atmosphere. Measuring the magnetic field in the upper solar atmosphere is crucial to understand the nature of the underlying physical processes that drive the violent dynamics of the solar corona—that can also affect life on Earth. SolmeX, a fully equipped solar space observatory for remote-sensing observations, will provide the first comprehensive measurements of the strength and direction of the magnetic field in the upper solar atmosphere. The mission consists of two spacecraft, one carrying the instruments, and another one in formation flight at a distance of about 200 m carrying the occulter to provide an artificial total solar eclipse. This will ensure high-quality coronagraphic observations above the solar limb. SolmeX integrates two spectro-polarimetric coronagraphs for off-limb observations, one in the EUV and one in the IR, and three instruments for observations on the disk. The latter comprises one imaging polarimeter in the EUV for coronal studies, a spectro-polarimeter in the EUV to investigate the low corona, and an imaging spectro-polarimeter in the UV for chromospheric studies. SOHO and other existing missions have investigated the emission of the upper atmosphere in detail (not considering polarization), and as this will be the case also for missions planned for the near future. Therefore it is timely that SolmeX provides the final piece of the observational quest by measuring the magnetic field in the upper atmosphere through polarimetric observations

    Capabilities of Gossamer-1 derived small spacecraft solar sails carrying MASCOT-derived nanolanders for in-situ surveying of NEAs

    Get PDF
    Any effort which intends to physically interact with specific asteroids requires understanding at least of the composition and multi-scale structure of the surface layers, sometimes also of the interior. Therefore, it is necessary first to characterize each target object sufficiently by a precursor mission to design the mission which then interacts with the object. In small solar system body (SSSB) science missions, this trend towards landing and sample-return missions is most apparent. It also has led to much interest in MASCOT-like landing modules and instrument carriers. They integrate at the instrument level to their mothership and by their size are compatible even with small interplanetary missions. The DLR-ESTEC Gossamer Roadmap NEA Science Working Groups‘ studies identified Multiple NEA Rendezvous (MNR) as one of the space science missions only feasible with solar sail propulsion. Parallel studies of Solar Polar Orbiter (SPO) and Displaced L1 (DL1) space weather early warning missions studies outlined very lightweight sailcraft and the use of separable payload modules for operations close to Earth as well as the ability to access any inclination and a wide range of heliocentric distances. These and many other studies outline the unique capability of solar sails to provide access to all SSSB, at least within the orbit of Jupiter. Since the original MNR study, significant progress has been made to explore the performance envelope of near-term solar sails for multiple NEA rendezvous. However, although it is comparatively easy for solar sails to reach and rendezvous with objects in any inclination and in the complete range of semi-major axis and eccentricity relevant to NEOs and PHOs, it remains notoriously difficult for sailcraft to interact physically with a SSSB target object as e.g. the Hayabusa missions do. The German Aerospace Center, DLR, recently brought the Gossamer solar sail deployment technology to qualification status in the Gossamer-1 project. Development of closely related technologies is continued for very large deployable membrane-based photovoltaic arrays in the GoSolAr project. We expand the philosophy of the Gossamer solar sail concept of efficient multiple sub-spacecraft integration to also include landers for one-way in-situ investigations and sample-return missions. These are equally useful for planetary defence scenarios, SSSB science and NEO utilization. We outline the technological concept used to complete such missions and the synergetic integration and operation of sail and lander. We similarly extend the philosophy of MASCOT and use its characteristic features as well as the concept of Constraints-Driven Engineering for a wider range of operations

    Translational research in acute lung injury and pulmonary fibrosis attenuating endogenous Fgfr2b ligands during bleomycin-induced lung fibrosis does not compromise murine lung repair

    Get PDF
    © 2015 the American Physiological Society Fibroblast growth factors (Fgfs) mediate organ repair. Lung epithelial cell overexpression of Fgf10 postbleomycin injury is both protective and therapeutic, characterized by increased survival and attenuated fibrosis. Exogenous administration of FGF7 (palifermin) also showed prophylactic survival benefits in mice. The role of endogenous Fgfr2b ligands on bleomycin-induced lung fibrosis is still elusive. This study reports the expression of endogenous Fgfr2b ligands, receptors, and signaling targets in wild-type mice following bleomycin lung injury. In addition, the impact of attenuating endogenous Fgfr2b-ligands following bleomycin-induced fibrosis was tested by using a doxycycline (dox)-based inducible, soluble, dominant-negative form of the Fgfr2b receptor. Double-transgenic (DTG) Rosa26rtTA/+;tet(O)solFgfr2b mice were validated for the expression and activity of soluble Fgfr2b (failure to regenerate maxillary incisors, attenuated recombinant FGF7 signal in the lung). As previously reported, no defects in lung morphometry were detected in DTG (+dox) mice exposed from postnatal days (PN) 1 through PN105. Female single-transgenic (STG) and DTG mice were subjected to various levels of bleomycin injury (1.0, 2.0, and 3.0 U/kg). Fgfr2b ligands were attenuated either throughout injury (days 0-11; days 0-28) or during later stages (days 6-28 and 14-28). No significant changes in survival, weight, lung function, confluent areas of fibrosis, or hydroxyproline deposition were detected in DTG mice. These results indicate that endogenous Fgfr2b ligands do not significantly protect against bleomycin injury, nor do they expedite the resolution of bleomycin-induced lung injury in mice

    Small Spacecraft Based Multiple Near-Earth Asteroid Rendezvous and Landing with Near-Term Solar Sails and ‘Now-Term‘ Technologies

    Get PDF
    Physical interaction with small solar system bodies (SSSB) is the next step in planetary science, planetary in-situ resource utilization (ISRU), and planetary defense (PD). It requires a broader understanding of the surface properties of the target objects, with particular interest focused on those near Earth. Knowledge of composition, multi-scale surface structure, thermal response, and interior structure is required to design, validate and operate missions addressing these three fields. The current level of understanding is occasionally simplified into the phrase, ”If you’ve seen one asteroid, you’ve seen one asteroid”, meaning that the in-situ characterization of SSSBs has yet to cross the threshold towards a robust and stable scheme of classification. This would enable generic features in spacecraft design, particularly for ISRU and science missions. Currently, it is necessary to characterize any potential target object sufficiently by a dedicated pre-cursor mission to design the mission which then interacts with the object in a complex fashion. To open up strategic approaches, much broader in-depth characterization of potential target objects would be highly desirable. In SSSB science missions, MASCOT-like nano-landers and instrument carriers which integrate at the instrument level to their mothership have met interest. By its size, MASCOT is compatible with small interplanetary missions. The DLR-ESTEC Gossamer Roadmap Science Working Groups‘ studies identified Multiple Near-Earth asteroid (NEA) Rendezvous (MNR) as one of the space science missions only feasible with solar sail propulsion. The Solar Polar Orbiter (SPO) study showed the ability to access any inclination, theDisplaced-L1 (DL1) mission operates close to Earth, where objects of interest to PD and for ISRU reside. Other studies outline the unique capability of solar sails to provide access to all SSSB, at least within the orbit of Jupiter, and significant progress has been made to explore the performance envelope of near-term solar sails for MNR. However, it is difficult for sailcraft to interact physically with a SSSB. We expand and extend the philosophy of the recently qualified DLR Gossamer solar sail deployment technology using efficient multiple sub-spacecraft integration to also include landers for one-way in-situ investigations and sample-return missions by synergetic integration and operation of sail and lander. The MASCOT design concept and its characteristic features have created an ideal counterpart for thisand has already been adapted to the needs of the AIM spacecraft, former part of the NASA-ESA AIDA mission. Designing the combined spacecraft for piggy-back launch accommodation enables low-cost massively parallel access to the NEA population

    Solar Sails for Planetary Defense and High-Energy Missions

    Get PDF
    20 years after the successful ground deployment test of a (20 m)² solar sail at DLR Cologne, and in the light of the upcoming U.S. NEAscout mission, we provide an overview of the progress made since in our mission and hardware design studies as well as the hardware built in the course of our solar sail technology development. We outline the most likely and most efficient routes to develop solar sails for useful missions in science and applications, based on our developed ‘now-term’ and near-term hardware as well as the many practical and managerial lessons learned from the DLR-ESTEC GOSSAMER Roadmap. Mission types directly applicable to planetary defense include single and Multiple NEA Rendezvous ((M)NR) for precursor, monitoring and follow-up scenarios as well as sail-propelled head-on retrograde kinetic impactors (RKI) for mitigation. Other mission types such as the Displaced L1 (DL1) space weather advance warning and monitoring or Solar Polar Orbiter (SPO) types demonstrate the capability of near-term solar sails to achieve asteroid rendezvous in any kind of orbit, from Earth-coorbital to extremely inclined and even retrograde orbits. Some of these mission types such as SPO, (M)NR and RKI include separable payloads. For one-way access to the asteroid surface, nanolanders like MASCOT are an ideal match for solar sails in micro-spacecraft format, i.e. in launch configurations compatible with ESPA and ASAP secondary payload platforms. Larger landers similar to the JAXA-DLR study of a Jupiter Trojan asteroid lander for the OKEANOS mission can shuttle from the sail to the asteroids visited and enable multiple NEA sample-return missions. The high impact velocities and re-try capability achieved by the RKI mission type on a final orbit identical to the target asteroid‘s but retrograde to its motion enables small spacecraft size impactors to carry sufficient kinetic energy for deflection

    卒後13年目の研修医

    Get PDF
    © 2015. Published by The Company of Biologists Ltd. Lipid-containing alveolar interstitial fibroblasts (lipofibroblasts) are increasingly recognized as an important component of the epithelial stem cell niche in the rodent lung. Although lipofibroblasts were initially believed merely to assist type 2 alveolar epithelial cells in surfactant production during neonatal life, recent evidence suggests that these cells are indispensable for survival and growth of epithelial stem cells during adulthood. Despite increasing interest in lipofibroblast biology, little is known about their cellular origin or the molecular pathways controlling their formation during embryonic development. Here, we showthat a population of lipid-droplet-containing stromal cells emerges in the developing mouse lung between E15.5 and E16.5. This is accompanied by significant upregulation, in the lung mesenchyme, of peroxisome proliferator-activated receptor gamma (master switch of lipogenesis), adipose differentiation-related protein (marker of mature lipofibroblasts) and fibroblast growth factor 10 (previously shown to identify a subpopulation of lipofibroblast progenitors). We also demonstrate that although only a subpopulation of total embryonic lipofibroblasts derives from Fgf10+ progenitor cells, in vivo knockdown of Fgfr2b ligand activityand reduction in Fgf10 expression lead to global reduction in the expression levels of lipofibroblast markers at E18.5. Constitutive Fgfr1b knockouts and mutants with conditional partial inactivation of Fgfr2b in the lung mesenchyme reveal the involvement of both receptors in lipofibroblast formation and suggest a possible compensation between the two receptors. We also provide data from human fetal lungs to demonstrate the relevance of our discoveries to humans. Our results reveal an essential role for Fgf10 signaling in the formation of lipofibroblasts during late lung development

    Small Spacecraft Based Multiple Near-Earth Asteroid Rendezvous and Landing with Near-Term Solar Sails and ‘Now-Term‘ Technologies

    Get PDF
    Physical interaction with small solar system bodies (SSSB) is the next step in planetary science, planetary in-situ resource utilization (ISRU), and planetary defense (PD). It requires a broader understanding of the surface properties of the target objects, with particular interest focused on those near Earth. Knowledge of composition, multi-scale surface structure, thermal response, and interior structure is required to design, validate and operate missions addressing these three fields. The current level of understanding is occasionally simplified into the phrase, ”If you’ve seen one asteroid, you’ve seen one asteroid”, meaning that the in-situ characterization of SSSBs has yet to cross the threshold towards a robust and stable scheme of classification. This would enable generic features in spacecraft design, particularly for ISRU and science missions. Currently, it is necessary to characterize any potential target object sufficiently by a dedicated pre-cursor mission to design the mission which then interacts with the object in a complex fashion. To open up strategic approaches, much broader in-depth characterization of potential target objects would be highly desirable. In SSSB science missions, MASCOT-like nano-landers and instrument carriers which integrate at the instrument level to their mothership have met interest. By its size, MASCOT is compatible with small interplanetary missions. The DLR-ESTEC Gossamer Roadmap Science Working Groups‘ studies identified Multiple Near-Earth asteroid (NEA) Rendezvous (MNR) as one of the space science missions only feasible with solar sail propulsion. The Solar Polar Orbiter (SPO) study showed the ability to access any inclination, theDisplaced-L1 (DL1) mission operates close to Earth, where objects of interest to PD and for ISRU reside. Other studies outline the unique capability of solar sails to provide access to all SSSB, at least within the orbit of Jupiter, and significant progress has been made to explore the performance envelope of near-term solar sails for MNR. However, it is difficult for sailcraft to interact physically with a SSSB. We expand and extend the philosophy of the recently qualified DLR Gossamer solar sail deployment technology using efficient multiple sub-spacecraft integration to also include landers for one-way in-situ investigations and sample-return missions by synergetic integration and operation of sail and lander. The MASCOT design concept and its characteristic features have created an ideal counterpart for thisand has already been adapted to the needs of the AIM spacecraft, former part of the NASA-ESA AIDA mission. Designing the combined spacecraft for piggy-back launch accommodation enables low-cost massively parallel access to the NEA population

    Flights Are Ten a Sail – Re-use and Commonality in the Design and System Engineering of Small Spacecraft Solar Sail Missions with Modular Hardware for Responsive and Adaptive Exploration

    Get PDF
    The exploration of small solar system bodies started with fast fly-bys of opportunity on the sidelines of missions to the planets. The tiny new worlds seen turned out to be so intriguing and different from all else(and each other) that dedicated sample-return and in-situ analysis missions were developed and launched. Through these, highly efficient low-thrust propulsion expanded from commercial use into mainstream and flagship science missions, there in combination with gravity assists. In parallel, the growth of small spacecraft solutions accelerated in numbers as well as individual spacecraft capabilities. The on-going missions OSIRIS-REx (NASA) or Hayabusa2 (JAXA) with its landers MINERVA-II and MASCOT, and the upcoming NEA scout mission are examples of this synergy of trends. The continuation of these and other related developments towards a propellant-less and highly efficient class of spacecraft for solar system exploration emerges in the form of small spacecraft solar sails designed for carefree handling and equipped with carried landers and application modules. These address the needs of all asteroid user communities– planetary science, planetary defence, and in-situ resource utilization – as well as other fields of solar system science and applications such as space weather warning and solar observations. Already the DLR-ESTEC GOSSAMER Roadmap for Solar Sailing initiated studies of missions uniquely feasible with solar sails such as Displaced L1 (DL1) space weather advance warning and monitoring and Solar Polar Orbiter(SPO) delivery, which demonstrate the capabilities of near-term solar sails to reach any kind of orbit in the inner solar system. This enables Multiple Near-Earth Asteroid (NEA) rendezvous missions (MNR),from Earth-coorbital to extremely inclined and even retrograde target orbits. For these mission types using separable payloads, design concepts can be derived from the separable Boom Sail Deployment Units characteristic of DLR GOSSAMER solar sail technology, nanolanders like MASCOT, or microlanders like the JAXA-DLR Jupiter Trojan Asteroid Lander for the OKEANOS mission which can shuttle from the sail to the targets visited and enable multiple NEA sample-return missions. These nanospacecraft scale components are an ideal match creating solar sails in micro-spacecraft format whose launch configurations are compatible with secondary payload platforms such as ESPA and ASAP. The DLR GOSSAMER solar sail technology builds on the experience gained in the development of deployable membrane structures leading up to the successful ground deployment test of a (20 m) solar sail at DLR Cologne in 1999 and in the 20 years since

    Weak stability boundary transfer to the Moon from GTO as a piggyback payload on Ariane 5

    No full text

    Die Simultan-Entwurfseinrichtung des DLR: Ein Instrument für effektives Systems Engineering

    No full text
    Systems-Engineering-Prozesse in der Raumfahrt beanspruchen im Allgemeinen viel Zeit, Kosten und Aufwand, hervorgerufen durch komplexe Zusammenhänge zwischen einzelnen Subsystemen und den extremen Bedingungen und Anforderungen im All. Um eine hohe Effi-zienz bezogen auf Qualität, Zeit und Kosten beim Entwurf von Systemen und Missionen ge-währleisten zu können, entsteht derzeit im DLR-Institut für Raumfahrtsysteme in Bremen eine Simultan-Entwurfseinrichtung (SEE). Diese ist nach dem Prinzip einer „Concurrent Engineering Facility“ (CEF) aufgebaut und besteht aus 12 Arbeitsplätzen für Spezialisten verschiedener Disziplinen, sowie weiteren Plätzen für Kunden, Besucher und Experten in einem Raum ausgestattet mit modernster Infrastruktur und Medientechnik. Das vorliegende Dokument gibt einen Überblick über den laufenden Entwicklungsstatus und die Visionen der SEE am DLR-Standort Bremen
    corecore