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Abstract— 20 years after the successful ground deployment 

test of a (20 m)² solar sail at DLR Cologne, and in the light of 

the upcoming U.S. NEAscout mission, we provide an overview 

of the progress made since in our mission and hardware design 

studies as well as the hardware built in the course of our solar 

sail technology development. We outline the most likely and 

most efficient routes to develop solar sails for useful missions in 

science and applications, based on our developed ‘now-term’ 

and near-term hardware as well as the many practical and 

managerial lessons learned from the DLR-ESTEC GOSSAMER 

Roadmap. Mission types directly applicable to planetary 

defense include single and Multiple NEA Rendezvous ((M)NR) 

for precursor, monitoring and follow-up scenarios as well as 

sail-propelled head-on retrograde kinetic impactors (RKI) for 

mitigation. Other mission types such as the Displaced L1 (DL1) 

space weather advance warning and monitoring or Solar Polar 

Orbiter (SPO) types demonstrate the capability of near-term 

solar sails to achieve asteroid rendezvous in any kind of orbit, 

from Earth-coorbital to extremely inclined and even 

retrograde orbits. Some of these mission types such as SPO, 

(M)NR and RKI include separable payloads. For one-way 

access to the asteroid surface, nanolanders like MASCOT are 

an ideal match for solar sails in micro-spacecraft format, i.e. in 

launch configurations compatible with ESPA and ASAP 

secondary payload platforms. Larger landers similar to the 

JAXA-DLR study of a Jupiter Trojan asteroid lander for the 

OKEANOS mission can shuttle from the sail to the asteroids 

visited and enable multiple NEA sample-return missions. The 

high impact velocities and re-try capability achieved by the 

RKI mission type on a final orbit identical to the target 

asteroid‘s but retrograde to its motion enables small spacecraft 

size impactors to carry sufficient kinetic energy for deflection. 
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1. INTRODUCTION 

Any effort which intends to physically interact with 

asteroids requires understanding of the composition and 

multi-scale surface structure, or even the interior. Mobile 

Asteroid Surface Scout (MASCOT) landing modules and 

instrument carriers can provide a first access [1-4]. They 

integrate at the instrument level to their mothership on 

‘small’ as well as larger interplanetary missions. [5-6] The 

DLR (German Aerospace Center) – ESTEC (European 

Space Research and Technology Centre) GOSSAMER 

Roadmap NEA Science Working Groups studied small 

spacecraft concepts. Target-flexible Multiple NEA 

Rendezvous (MNR) [7], Solar Polar Orbiter (SPO) [8], and 

Displaced L1 (DL1) spaceweather early warning [9] were 

identified as science missions uniquely feasible with solar 

sail propulsion. Many such studies outline the unique 

capability of solar sails to provide access to all small solar 

system bodies (SSSB), at least within the orbit of Jupiter. 

Since, significant progress has been made to improve MNR 

trajectory design. [10] [184][185] (cf.[238]) 

Although it is relatively easy for solar sails to rendezvous 

with Near-Earth and Potentially Hazardous Objects (NEO, 

PHO) in any inclination over the relevant range of semi-

major axis and eccentricity, it remains notoriously difficult 

for sailcraft to land on or interact physically with a SSSB 

target. The German Aerospace Center, DLR, qualified solar 

sail deployment technologies in the GOSSAMER-1 project. 

[11][13] This technology development continues in the 

GOSOLAR large photovoltaic arrays project. [12]  

A Brief History of… 

The idea of an outward propulsive force of sunlight, and 

thus of sunlight as a practical source of energy, goes back to 

Kepler’s observations on the directionality of comets’ tails 

of 1619. [14] Its magnitude was predicted by Maxwell in 

1873 [15] and Bartoli in 1876 [16]. That year, the 

foundations of semiconductor technology were laid by 

Adams’s and Day’s discovery of an electrical current driven 

by selenium exposed to light. [17][18] Kepler’s hypothesis 

was experimentally demonstrated as pressure due to 

radiation by Lebedev in 1901 [19] and Nichols and Hull in 

1903 [20]. Solar sailing for space propulsion was proposed 

first by Oberth [22] and Tsiolkovsky in 1923 and 1924, 

respectively [21]. Garwin introduced the term ‘solar sailing’ 

in 1958. [23] It was then considered a key option to go 

beyond Mars or Venus. Photovoltaics developed from a 

curiosity [24][175][176] to the power source in space, with 

very few exceptions [25-29]. The discovery of gravity-

assists in 1961 made the solar system instantly accessible 

with available launchers [30]. This disruptive paradigm 

change from a mostly inaccessible solar system requiring 

huge nuclear-electric spaceships [31][32] to the Voyager 

missions firmly established the combination of chemical 

propulsion with gravity-assists in solar system exploration 

[33-38] from Earth [39-41]. Fitting space probes into 

existing fairings advanced electronics and miniaturization. 

[42-44] Nuclear power sources became small niche devices 

for the outer solar system [45] beyond the extending reach 

of developed photovoltaics. [177-179] Electric propulsion 

only made it into any mission in the 1990s, on photovoltaic 

power. [40][47-50][238] Among the solar sail demonstrators 

launched so far, [51] the sole exception is the Interplanetary 

Kite-craft Accelerated by Radiation Of the Sun (IKAROS) 

[52][180], which accompanied JAXA’s atmosphere 

observation orbiter, AKATSUKI, to Venus. The IKAROS first 

demonstrated solar sail effect in space, successfully and as 

predicted. It also performed the first gravity-assist of a solar 

sail on December 8
th

, 2010, passing Venus at 80800 km 
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distance and achieving about 20° deflection of theIKAROS’ 

trajectory. 

The development of solar sail technology at DLR—A first 

phase culminated in a successful ground deployment test of 

a (20 m)² boom-supported sail on December 17
th

, 1999. 

Near-term science missions such as ODISSEE and GEOSAIL 

however did not materialize. [53-60] Subsequently, the 

DLR-ESA (European Space Agency) GOSSAMER Solar Sail 

Technology Roadmap was initiated in 2009 to develop the 

technology independently from any mission to an acceptable 

TRL (Technology Readiness Level). [61][62] It envisaged 3 

steps: Deployment demonstration (GOSSAMER-1) and 

control technology evaluation (GOSSAMER-2) in safe orbits 

(cf. [63]), and a demo mission proving the principle in near-

Earth space (GOSSAMER-3). GOSSAMER-1 was brought to 

EQM (Engineering Qualification Model) status in an intense 

integration and verification campaign (cf. [64][246]) leading 

to TRL5 status [65] (according to [66], cf. [67-71]). 

[181][173][240] Further development of deployment 

technologies at DLR focuses on membrane-based thin-film 

photovoltaics [12][72][73][182][240][242] and dedicated 

support functions for interplanetary applications [247]. The 

research and testing of the materials used in solar sails as 

well as other membrane-based large-scale deployable 

structures or for thermal isolation purposes is meanwhile 

continued, as well [115][118][163][183] (also cf. [112][113] 

[114][116][117][232]). Fidelity to the intended as well as 

knowledge of the actually deployed shape of the membrane 

is as critical for solar sail thrust vectoring as it is for power 

generation using thin membrane based photovoltaics. [248] 

2. MOTIVATION  

The recent achievements in solar sail trajectory design 

[10][184][185] (cf.[238]) and sailcraft hardware 

development [13][52][74-81][186-193] made clear that a 

point has been reached where a review of the results and 

ongoing efforts should be made for a determination which 

road they should take. The background is a decade of 

sustained interest in SSSB with HAYABUSA, 

ROSETTA/PHILAE,  HAYABUSA2 [39], OSIRIS-REx [41], 

IKAROS [52][74-77], and first steps towards a long-term 

Solar Power Sail (SPS) sample-return mission to a Jupiter 

Trojan asteroid, the Outsized Kite-craft for Exploration and 

Astronautics in the Outer Solar System (OKEANOS) [78-

80]. NEAs in many ways may hold keys to our future on 

Earth and in space and merit exploration for planetary 

science, planetary defense, and possibly asteroid mining. 

Small Spacecraft—Affordable rideshare launch options 

exist for several small Earth satellite classes. [82-86] With 

additional requirements for propulsion and communication 

in mind, we apply practical criteria based on launch 

accommodation [87][88] and basic spacecraft design 

concepts. [3] MASCOT (9.64 kg) and its derivatives are 

'nanolanders'. PHILAE (96 kg) is a 'microlander' [3] by 

similarity in design with highly compact microsatellites 

such as BIRD (92 kg) [89], TET-1 (110 kg) [90], or 

AsteroidFinder (~127 kg) [91]. Design-driving constraints 

apply mainly to the launch configuration. Thus, ‘micro‘ 

sailcraft are those which fit the U.S. ESPA or the various 

Arianespace ASAP and VESPA platforms‘ ‘micro‘ 

positions. ‘Mini‘ sailcraft fit the respective larger slots. 

[87][88] ‘Nano‘ sailcraft are those small enough to ride in 

place of cubesats dispensers, such as NEAscout [81]. 

Together, all these are ‘small‘ sailcraft. 

3. MNR MISSION SCENARIO  

Target-flexible multiple NEA rendezvous (MNR) [10] is a 

space science mission presently uniquely feasible with solar 

sail propulsion, as already identified in a GOSSAMER 

Roadmap study. [7] The parallel SPO [8], DL1 [9], and 

earlier retrograde kinetic impactor (RKI) [97-99][244] 

studies showed the ability to access any inclination and a 

wide range of heliocentric distances – each mission type 

requiring a ΔV infeasible with chemical propulsion and well 

beyond the limits of present electrical propulsion. At one 

extreme, hardly departing from the Earth, the sail of a DL1 

mission constantly lifts the sailcraft against the gravity of 

the Sun to follow the Earth well inside its orbit but at the 

same rate. At the other extreme, the RKI completely 

reverses its initial obital path in the solar system: Retrograde 

orbits can be used to significantly increase the impact speed 

of projectiles for kinetic energy deflection strategies. 

Typical prograde orbit impact speeds of 10-15 km/s can be 

raised to 60 km/s for a head-on retrograde impact near 

Earth, thus significantly reducing the mass of projectile 

required to deflect an asteroid of a given size [244]. Even 

higher encounter velocities are possible in intercepts at 

lower heliocentric distances. [97-99] In order to deliver a 

projectile to a retrograde orbit, a solar sail can be used to 

‘crank’ the orbit inclination by pitching the sail such that a 

component of thrust is alternately directed above/below the 

orbit plane every half-orbit. Clearly, the targeting of the 

impact of the projectile onto an asteroid from a retrograde 

orbit would be challenging at such speeds. However, the 

leverage delivered is substantial and, again, can significantly 

reduce the mass of projectile required to deflect an asteroid 

of a given size.  

Current MNR trajectory studies visit within 10 years from 

Earth departure (c3≥0) 5 different NEAs for >100 days 

rendezvous, each, with one near-term first-generation 

sailcraft. [10] Rendezvous duration is comparable to the 

Asteroid Impact Mission (AIM) at binary NEA (65803) 

Didymos. [92] The sequence of NEAs is not driven or 

constrained by a-priori trajectory design or launch window 

requirements. It can be changed easily on a daily basis, even 

after launch and between rendezvous. [10] A sailcraft 

carrying a set of 5 MASCOT landers with different science 

instruments and landing or mobility related systems appears 

desirable. Which lander is used can be decided after arrival 

at target asteroids. Much of the MASCOT lander design can 

be shared with the core sailcraft and its four boom-sail 

deployment units (BSDU). Design elements of the 

GOSSAMER-1 EQM BSDU were shared in the ROBEX 

lunar-analog demonstration mission’s Remote Units (RU). 

[93][194] MNR missions consisting of 10 independent sub-
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spacecraft physically connected at launch and separated 

step-by-step throughout the mission enable resource-sharing 

as well as economies of scale. Table 1 shows the mission 

parameters of the reference paper. [10] The required 

characteristic acceleration, ac = 0.2 mm/s², is within the 

capability of current sailcraft technology. [11] Only NHATS 

(NEO Human Space Flight Accessible Targets Study) and 

PHA were considered with parameters obtained from 

[95][96]. Note that neither arrival at 2014 MP after ~9.4 

years nor the 222-day stay there still within the 10-year 

trajectory design goal is necessarily the end of the mission. 

The visit at 2014 MP may well be followed by another 

departure and more journeys to and stays at other NEAs, as 

long as the sailcraft remains flightworthy. 

Table 1 – Reference MNR mission sequence. [10] 

 
A return leg to Earth instead of 2014 MP extends the total 

mission duration slightly to 11.3 years (Fig. 1). Mission 

duration only depends on spacecraft quality and interest in 

its continued operation (cf. [94]), not on consumables 

aboard.  

 

Fig. 1 – 3D view of the complete Earth-return trajectory 

MNR trajectory searches turn up 100’s of possible 

sequences per launch date. The sequence Earth – 2003 

WT153, (65679) 1989 UQ – (401954) 2002 RW25 [184] 

contains two almost km-sized PHAs after a very small first 

target possibly of interest to ARRM-like missions [102]. Its 

total ΔV for only 3 targets is 52.1 km/s, considered not 

feasible with near-term high-performing electric-propulsion 

technology [184]. Low-thrust missions requiring a 

consumable propellant are restricted to the thin end of the 

low-ΔV tail of the total ΔV distribution of sequences. They 

require optimization for this parameter which sacrifices the 

target change and launch date flexibility of the solar sail 

based solution. For example, Maiwald and Marchand [238] 

found a 5-NEA sequence Earth – 2001 QJ142 – 2000 SG344 – 

2009 OS5 – 2007 YF – 1999 AO10 for Earth departure on 

March 21
st
, 2023 which only requires 16.6 km/s total ΔV. 

However, all targets are very small (H≈24) and likely not 

suitable for passive landers. Also, this solar-electric 

propulsion (SEP) MNR mission is no longer ‘small’ [238]. 

The Unknown Unknowns—Hardly anything of use to a 

highly optimized spacecraft design is known on these 

NEAs. 2008 EV5 is the only one in [10] with a shape model 

[100] and a few other known parameters beyond its orbit 

[101][102]. Fig.2 shows a likely asteroid thermal 

environment. [195][243]. 

 

Fig. 2 – Surface temperatures of 121 K to 364 K (blue to 

red) on (341843) 2008 EV5 for March 4
th

, 2031, 0h and 

3.725 h rotation, TI = 450, PM = 0-[100][101][195][243] 

Thus, spacecraft and lander designs need to be very robust 

and anticipate very wide variation of the surface conditions, 

cf. [145-148][196-198]. MASCOT was already designed to 

cope with the rather strong seasonal variations that were 

expected on Ryugu [128][199][200] and it can be adapted to 

other variables of the environment, as well. [3][241] 

 

4. GOSSAMER-STYLE INTEGRATED LANDERS  

A key design feature of GOSSAMER solar sails are 4 Boom 

Sail Deployment Units (BSDU) which synchronously move 

away from the Central Sailcraft Unit (CSCU) to uncoil the 

booms and unfold the sail segments. They connect through 

wired interfaces while attached. After separation, the 5 sub-

spacecraft communicate in a wireless network [11][13][103-

111][173][174][181]. This communication and a Charging 

Network (CN) which enables the exchange of energy across 

sub-spacecraft boundaries can be extended to more than 5 

nodes, to support landers still attached to the CSCU after 

sail deployment. GOSSAMER-1 already supports non-

separable high data rate devices, the deployment monitoring 

cameras. [140-142] 

Lander Options—When landers are separated from the 

carrying sailcraft like MASCOT from HAYABUSA2, by a 

pre-set spring force, the sail trajectory has to ensure that the 

separated lander arrives at its target, similar to AIM for 

MASCOT2. [2] The sail may be in very slow fly-by, or in a 

stable solar-radiation-pressure displaced orbit or station-

keeping. [120-122] Proximity operations of solar sails likely 

pose significant challenges and depend critically on sail 

attitude control methods yet to be proven in flight. 

Object 
Stay time 

[days] 
 

Start End 
Time of flight 

[days] 

Earth // 

 
10 May 2025 26 Feb 2027 657 

2000 SG344 123 

 
29 Jun 2027 06 Sep 2028 436 

2015 JD3 164 

 
18 Feb 2029 24 Sep 2030 584 

2012 KB4 160 

 
04 Mar 2031 29 Sep 2032 576 

2008 EV5 171 

 
20 Mar 2033 30 Sep 2034 560 

2014 MP // 
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Alternatively, a self-propelled lander can be used. At the 

asteroid, the sail would be parked at a safe distance and 

detach the lander for proximity operations. OKEANOS, the 

spin-deployed JAXA Solar Power Sail follows this concept.  

 

 
Fig. 3 – Notional accommodation of MASCOT-style 

nanolanders aboard a GOSSAMER-style microsailcraft 

 

MASCOT—DLR in collaboration with the French space 

agency, CNES, has developed the Mobile Asteroid Surface 

Scout, MASCOT, a small one-way asteroid lander which 

packs four full-scale science instruments and relocation 

capability into a shoebox-sized ~10 kg spacecraft. [1] It 

carries the hyperspectral near-IR soil microscope, 

MicrOmega, (MMEGA), [124][201][202] a high dynamic 

range black-and-white camera with night-time multicolour 

illumination (MasCAM), [125] a 6-channel thermal IR 

radiometer (MARA), [126][143] and a fluxgate 

magnetometer (MasMAG). [127] MASCOT is an 

organically integrated high-density constraints-driven 

design built in a short time using concurrent engineering 

methods (for more detail, [129-138][25][203-205][239]).  

MASCOT2—A long-life MASCOT derivate was developed 

for ESA’s AIM orbiter [165] of the joint NASA-ESA 

Asteroid Impact & Deflection Assessment (AIDA) mission 

[166][167] including the DART kinetic impactor test 

spacecraft [168]. A Low Frequency Radar [139][169-171] 

and an accelerometer (cf. [206][207][233-236]) replace 

MMEGA to study the interior of DART impact target 

(65803) S1 ‘Didymoon’ before and after impact. 

MASCOT2 was developed using the DLR Bremen 

Concurrent Engineering Facility (CEF). [208-210] It has 

turned out to be very flexible baseline for several further 

studies pursuing different small body science goals, and 

appears as a good reference for the MNR mission. 

Sample-Return Lander—Samples of the NEAs visited can 

be returned by a larger lander shuttling between the NEAs 

and the sailcraft. Landing gear development can build on the 

lessons learned from PHILAE [207][211][212]. Technologies 

to pick up and transfer asteroid samples are demonstrated by 

the HAYABUSAs and OSIRIS-REx. The lander design for the 

JAXA Solar Power Sail mission, OKEANOS, to pick up 

samples from a Jupiter Trojan asteroid emphasizes in-situ 

analysis of samples due to the very long duration return 

journey. [149][150] For MNR, the in-situ analysis suite of 

instruments can be reduced due to shorter mission duration 

facilitating sample return to Earth. [174][213-215] Figure 4 

shows the first sample retrieval cycle of such a lander. 

 
Fig. 4 – Concept of operation of a shuttling microlander. 

 

Resource Sharing of Lander(s) and Sailcraft—As in the 

GOSSAMER-1 concept, many resources are shared with the 

CSCU in cruise and the CSCU-BSDUs before sail 

deployment. Landers which have to expect rough terrain (cf. 

MASCOT) and unexpected shadowed areas (cf. PHILAE) 

require a relatively large battery while a deployed sailcraft 

in deep space only needs a relatively small battery. Batteries 

of still-attached lander(s) can support the CSCU during 

deployment of the sail when the BSDUs have already 

separated from it. The deployed sailcraft can generate power 

using ultra-lightweight membrane-mounted photovoltaics 

similar to GOSOLAR technology. [12] The landers’ 

photovoltaics generators exposed to the outside in launch 

configuration and after BSDU separation can generate the 

pre-/in-deployment power for the CSCU.  

 
 

Fig. 5 – Notional accommodation of a minisail with 

shared use of photovoltaics, battery, and propulsion 

 

Science instruments of the landers, in particular panoramic 

cameras and thermal infrared sensors, can monitor sail 

deployment and membrane ageing, cf. [13][151][164]. The  
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fields of view (FoV) of the MASCOT instruments CAM 

(light green) and MARA (light grey) are indicated in Fig. 3, 

clearly showing their potential for various main spacecraft 

oriented monitoring tasks. Instruments of the landers still 

attached can also double as ‘orbiter’ instruments, e.g., to 

monitor the asteroid in the vicinity of the sailcraft without 

the need to turn it for the pointing of a boresighted sailcraft 

camera. Note the upper limit of the CAM FoV in Fig. 3 

which enables views of target asteroids akin to the view of 

67P from PHILAE still aboard ROSETTA. These and more 

opportunities for resource sharing can be used to adapt 

landers similar to MASCOT, PHILAE, or the OKEANOS 

lander into GOSSAMER-style integrated sub-spacecraft 

performing a common mission. Figure 5 shows an example. 

5. PLANETARY DEFENSE EXERCISES  

At the 2017 Planetary Defence Conference, a diversion from 

an ongoing MNR mission towards a fictitious newly 

discovered impactor, “2017 PDC”, was studied (see [174] 

for details). Pre-impact rendezvous was not achieved from 

the reference scenario [10] but 2 potentially useful 

trajectories were found. A rendezvous with 2017 PDC, 3 

years after the fictious impact was found from the sequence 

2005 TG50 – 2015 JF11 – 2012 BB4 – 2014 YN, diverting 

after the second target e.g. to determine the precise post-

deflection trajectory of the asteroid, but also requiring a 

characteristic acceleration beyond near-term capabilities. A 

fast fly-by of 2017 PDC, 3 months before the fictitious 

impact was also found, to assess the state of the asteroid 

after deflection or to look for undetected partial disruption 

objects. PDC’13 exercise target 2011 AG5 [152] more easily 

matches the reference 5-NEA-sequence. [10] Again, the last 

leg (Table 1) is replaced by a leg to PHA 2011 AG5, for 

which a fictitious impact was expected for February 3
rd

, 

2040. A methodology similar to [153-156][226] has been 

used. Total mission duration is ~12 years; arrival at 2011 

AG5 on May 25
th

, 2037, about 3 years before impact. [174] 

It would be possible to combine MNR solar sail 

technologies, tuned and optimized for deflection trajectories 

[97-99] with parallel advances in kinetic impactor guidance 

technology [227-230] using small spacecraft concepts [123]. 

High velocity launch—Due to the mass and deployment 

requirements of solar sailing, launch configurations can be 

very compact. A typical MNR design would fit ‘micro’ 

secondary passenger slots to GTO, with a small kick 

prpoulsion module to escape (c3>0) included. A dedicated 

launch would be an option for missions requiring an 

extremely high c3 or reduced flight time to target. Ariane 5 

ECA [119] maximum velocity escape trajectory 

performance was calculated for i=6° (Kourou). When all 

unnecessary standard equipment units are removed, 

payloads of 500 kg, 250 kg, and 50 kg, can respectively be 

injected on escape trajectories of c3 ≈56 km²/s², 60 km²/s², 

and 64 km²/s². Still higher velocities can be achieved by 

adding upper stages similar to the launch configurations of 

NEW HORIZONS [174] or LISA Pathfinder. [231] 

6. FUTURE WORK  

We have here collected the building bricks required to begin 

a wider exploration of our neighborhood by surveying the 

members of the solar system nearest to Earth for planetary 

science, planetary defense and planetary resources. The 

development of MNR trajectories enables a 100-day NEA 

rendezvous every 2 years per spacecraft. [10] Small 

spacecraft technology enables shoebox-sized one-way 

landers [1] and fridge-sized sailcraft [11] able to perform 

these trajectories. By a modest increase in size, samples can 

be returned to Earth. [5] Current large launch vehicles can 

carry several such sailcraft at a time [87][88] or accelerate 

one to solar escape, although due to gravity-assist 

trajectories [33], most won’t require this. [30] So far, these 

bricks stand largely independent of each other. But gravity-

assist sequencing begins to include low-thrust propulsion, 

and vice-versa, e.g. [39][41][158-161]. Tools for such 

complex trades are developed by Model-Based System 

Engineering. [3][162] It appears that easier access to the 

solar system, less constrained by launch windows or 

payload limitations, can be achieved by connecting all these 

bricks. Small MNR missions are affordable entry level 

practice systems. This future work can start now. 

7. CONCLUSIONS  

We outlined a synergetic development path of small 

spacecraft solar sails and nano-scale asteroid landers 

enabling a substantial increase in the number of NEAs 

studied by planetary science in a dynamic manner which 

allows in-flight adjustment of the choice of rendezvous 

targets. The capability to change targets in flight also allows 

a mission already in flight to respond to extreme events such 

as a probable Earth impactor being discovered. It may also 

follow changing commercial interest in this manner. Within 

the capabilities of near-term first-generation sailcraft 

technology are 5 NEA rendezvous of at least 100 days, 

each, in 10 years by one spacecraft. The small spacecraft 

approach enables the use of surplus launcher payload 

capability in the market with a potential of 10’s of launches 

per year. If the spacecraft concept here presented were 

serialized, the number of NEAs studied could be increased 

by orders of magnitude within a few decades. The small 

mass of small spacecraft solar sails also enables very high 

launch energy missions based on available geostationary 

market launch vehicles to the most challenging targets of the 

solar system, including planetary defence scenarios. 
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