175 research outputs found
An Improved Unscented Kalman Filter for Discrete Nonlinear Systems with Random Parameters
This paper investigates the nonlinear unscented Kalman filtering (UKF) problem for discrete nonlinear dynamic systems with random parameters. We develop an improved unscented transformation by incorporating the random parameters into the state vector to enlarge the number of sigma points. The theoretical analysis reveals that the approximated mean and covariance via the improved unscented transformation match the true values correctly up to the third order of Taylor series expansion. Based on the improved unscented transformation, an improved UKF method is proposed to expand the application of the UKF for nonlinear systems with random parameters. An application to the mobile source localization with time difference of arrival (TDOA) measurements and sensor position uncertainties is provided where the simulation results illustrate that the improved UKF method leads to a superior performance in comparison with the normal UKF method
Structure-based discovery of inhibitors of the YycG histidine kinase: New chemical leads to combat Staphylococcus epidermidis infections
BACKGROUND: Coagulase-negative Staphylococcus epidermidis has become a major frequent cause of infections in relation to the use of implanted medical devices. The pathogenicity of S. epidermidis has been attributed to its capacity to form biofilms on surfaces of medical devices, which greatly increases its resistance to many conventional antibiotics and often results in chronic infection. It has an urgent need to design novel antibiotics against staphylococci infections, especially those can kill cells embedded in biofilm. RESULTS: In this report, a series of novel inhibitors of the histidine kinase (HK) YycG protein of S. epidermidis were discovered first using structure-based virtual screening (SBVS) from a small molecular lead-compound library, followed by experimental validation. Of the 76 candidates derived by SBVS targeting of the homolog model of the YycG HATPase_c domain of S. epidermidis, seven compounds displayed significant activity in inhibiting S. epidermidis growth. Furthermore, five of them displayed bactericidal effects on both planktonic and biofilm cells of S. epidermidis. Except for one, the compounds were found to bind to the YycG protein and to inhibit its auto-phosphorylation in vitro, indicating that they are potential inhibitors of the YycG/YycF two-component system (TCS), which is essential in S. epidermidis. Importantly, all these compounds did not affect the stability of mammalian cells nor hemolytic activities at the concentrations used in our study. CONCLUSION: These novel inhibitors of YycG histidine kinase thus are of potential value as leads for developing new antibiotics against infecting staphylococci. The structure-based virtual screening (SBVS) technology can be widely used in screening potential inhibitors of other bacterial TCSs, since it is more rapid and efficacious than traditional screening technology
Optic disc shape in patients with long-lasting unilateral esotropia and exotropia
Background: Horizontal eye movements have been proposed to induce biomechanical stress and strain on optic nerve head. Since strabismus may lead to sustained adduction or abduction, we investigate the effects of long lasting unilateral horizontal strabismus on the morphology of optic disc.
Methods: The observational cross-sectional study included patients with unilateral constant horizontal strabismus lasting for more than two years. The patients underwent an ophthalmological examination including refraction and morphometry of the optic nerve head. A prism cover test using right angle glass prism was performed to measure the magnitude of the ocular deviation.
Results: The study included 70 patients with a unilateral constant strabismus (35 esotropic patients, 35 exotropic patients) with a mean age of 26 ± 19 years, mean refractive error of − 0.72 ± 3.3 diopters, mean axial length of 23.8 ± 1.7 mm, and a mean angle of deviation of 87 ± 36 prism diopters (Chinese right-angle glass method) in the esotropic group and − 97 ± 29 prism diopters in the exotropic group. In the whole study population and taken separately in the esotropic group and exotropic group, the disc ovality index (defined as ratio of minimal-to-maximal optic disc diameter) did not differ significantly between the deviating eyes and the contralateral fixating eyes (all P > 0.05). As a corollary, the disc ovality index and the prevalence of parapapillary beta/gamma zone did not differ significantly between the esotropic group and the exotropic group (all P > 0.05).
Conclusions: Optic disc ovality did not differ markedly among long-lasting esotropic eyes, exotropic eyes, and non-strabismic eyes. It suggests that optic disc shape may not be markedly influenced in non-highly myopic eyes by a potential backward pull of the optic nerve on the optic disc structures in adduction or abduction
DNA-Interacting Characteristics of the Archaeal Rudiviral Protein SIRV2_Gp1
Whereas the infection cycles of many bacterial and eukaryotic viruses have been characterized in detail, those of archaeal viruses remain largely unexplored. Recently, studies on a few model archaeal viruses such as SIRV2 (Sulfolobus islandicus rod-shaped virus) have revealed an unusual lysis mechanism that involves the formation of pyramidal egress structures on the host cell surface. To expand understanding of the infection cycle of SIRV2, we aimed to functionally characterize gp1, which is a SIRV2 gene with unknown function. The SIRV2_Gp1 protein is highly expressed during early stages of infection and it is the only protein that is encoded twice on the viral genome. It harbours a helix-turn-helix motif and was therefore hypothesized to bind DNA. The DNA-binding behavior of SIRV2_Gp1 was characterized with electrophoretic mobility shift assays and atomic force microscopy. We provide evidence that the protein interacts with DNA and that it forms large aggregates, thereby causing extreme condensation of the DNA. Furthermore, the N-terminal domain of the protein mediates toxicity to the viral host Sulfolobus. Our findings may lead to biotechnological applications, such as the development of a toxic peptide for the containment of pathogenic bacteria, and add to our understanding of the Rudiviral infection cycle.status: publishe
Refraction and Ocular Biometry of Preschool Children in Shanghai, China
Purpose. To investigate the refraction and ocular biometry characteristics and to examine the prevalence of refractive errors in preschool children aged 3 to 6 years in Shanghai, China. Methods. A school-based cross-sectional study was conducted in Jiading and Xuhui District, Shanghai, in 2013. We randomly selected 7 kindergartens in Jiading District and 10 kindergartens in Xuhui District, with a probability proportionate to size. The children underwent comprehensive eye examinations, including cycloplegic refraction and biometric measurements. Myopia, hyperopia, astigmatism were defined as spherical equivalent (SE) ≤ −0.50 D, SE ≥ +2.00 D, and cylindrical diopters ≤ −1.00 D. Results. The mean SE for 3- to 6-year-old children was +1.20 D (standard deviation [SD] 1.05), and the mean axial length (AL) was 22.29 mm (SD 0.73). The overall prevalence of myopia and astigmatism was 3.7% and 18.3%, respectively. No difference in prevalence of astigmatism was found across age groups. There was a statistically significant association between lower cylindrical diopters and higher spherical diopters (Spearman’s correlation: −0.21, P<0.001). Conclusion. Chinese children aged 3 to 6 years in the Shanghai area were mostly mildly hyperopic, with a low prevalence of myopia. Refractive astigmatism for children may be relatively stable throughout the preschool stage. Astigmatism was significantly associated with refractive error
The effective on intradermal acupuncture based on changes in biological specificity of acupoints for major depressive disorder: study protocol of a prospective, multicenter, randomized, controlled trial
BackgroundAntidepressants still have some side effects in treating major depressive disorder (MDD), and acupuncture therapy is a complementary therapy of research interest for MDD. Acupoints are sensitive sites for disease response and stimulation points for acupuncture treatment. Prior studies suggest that the biological specificity of acupoints is altered in physiological and pathological situations. Therefore, we hypothesize that the biological specificity of acupoints is associated with the diagnosis of MDD and that stimulating acupoints with significant biological specificity can achieve a better therapeutic effect than clinical common acupoints. This study aims to investigate the efficacy and safety of intradermal acupuncture (IA) treatment for MDD based on changes in the biological specificity of acupoints.MethodsThe first part of the study will enroll 30 MDD patients and 30 healthy control (HC) participants to assess pain sensitivity and thermal specificity of MDD-related acupoints using a pressure pain threshold gauge (PTG) and infrared thermography (IRT). The potentially superior acupoints for treating MDD will be selected based on the results of PTG and IRT tests and referred to as pressure pain threshold strong response acupoints (PSA) and temperature strong response acupoints (TSA).The second part of the study will enroll 120 eligible MDD patients randomly assigned to waiting list (WL) group, clinical common acupoint (CCA) group, TSA group, and PSA group in a 1:1:1:1 ratio. The change in the Patient Health Questionnaire-9 Items (PHQ-9), the MOS item short-form health survey (SF-36), pressure pain threshold, temperature of acupoints, and adverse effects will be observed. The outcomes of PHQ-9 and SF-36 measures will be assessed before intervention, at 3 and 6 weeks after intervention, and at a 4-week follow-up. The biological specificity of acupoint measures will be assessed before intervention and at 6 weeks after intervention. All adverse effects will be assessed.DiscussionThis study will evaluate the therapeutic effect and safety of IA for MDD based on changes in the biological specificity of acupoints. It will investigate whether there is a correlation between the biological specificity of MDD-related acupoints and the diagnosis of MDD and whether stimulating strong response acupoints is superior to clinical common acupoints in the treatment of MDD. The study’s results may provide insights into the biological mechanisms of acupuncture and its potential as a complementary therapy for MDD.Clinical Trial RegistrationClinicalTrials.gov, identifier: NCT05524519
Genomic prediction of drought tolerance during seedling stage in maize using low-cost molecular markers
Drought tolerance in maize is a complex and polygenic trait, especially in the seedling stage. In plant breeding, complex genetic traits can be improved by genomic selection (GS), which has become a practical and effective breeding tool. In the present study, a natural maize population named Northeast China core population (NCCP) consisting of 379 inbred lines were genotyped with diversity arrays technology (DArT) and genotyping-by-sequencing (GBS) platforms. Target traits of seedling emergence rate (ER), seedling plant height (SPH), and grain yield (GY) were evaluated under two natural drought stress environments in northeast China. Adequate genetic variations were observed for all the target traits, but they were divergent across environments. Similarly, the heritability of the target trait also varied across years and environments, the heritabilities in 2019 (0.88, 0.82, 0.85 for ER, SPH, GY) were higher than those in 2020 (0.65, 0.53, 0.33) and cross-2-years (0.32, 0.26, 0.33). In total, three marker datasets, 11,865 SilicoDArT markers obtained from the DArT-seq platform, 7837 SNPs obtained from the DArT-seq platform, and 91,003 SNPs obtained from the GBS platform, were used for GS analysis after quality control. The results of phylogenetic trees showed that broad genetic diversity existed in the NCCP population. Genomic prediction results showed that the average prediction accuracies estimated using the DArT SNP dataset under the two-fold cross-validation scheme were 0.27, 0.19, and 0.33, for ER, SPH, and GY, respectively. The result of SilicoDArT is close to the SNPs from DArT-seq, those were 0.26, 0.22, and 0.33. For the trait with lower heritability, the prediction accuracy can be improved using the dataset filtered by linkage disequilibrium. For the same trait, the prediction accuracies estimated with two DArT marker datasets were consistently higher than that estimated with the GBS SNP dataset under the same genotyping cost. The prediction accuracy was improved by controlling population structure and marker quality, even though the marker density was reduced. The prediction accuracies were improved by more than 30% using the significant-associated SNPs. Due to the complexity of drought tolerance under the natural stress environments, multiple years of data need to be accumulated to improve prediction accuracy by reducing genotype-by-environment interaction. Modeling genotype-by-environment interaction into genomic prediction needs to be further developed for improving drought tolerance in maize. The results obtained from the present study provides valuable pathway for improving drought tolerance in maize using GS
Real-time Monitoring for the Next Core-Collapse Supernova in JUNO
Core-collapse supernova (CCSN) is one of the most energetic astrophysical
events in the Universe. The early and prompt detection of neutrinos before
(pre-SN) and during the SN burst is a unique opportunity to realize the
multi-messenger observation of the CCSN events. In this work, we describe the
monitoring concept and present the sensitivity of the system to the pre-SN and
SN neutrinos at the Jiangmen Underground Neutrino Observatory (JUNO), which is
a 20 kton liquid scintillator detector under construction in South China. The
real-time monitoring system is designed with both the prompt monitors on the
electronic board and online monitors at the data acquisition stage, in order to
ensure both the alert speed and alert coverage of progenitor stars. By assuming
a false alert rate of 1 per year, this monitoring system can be sensitive to
the pre-SN neutrinos up to the distance of about 1.6 (0.9) kpc and SN neutrinos
up to about 370 (360) kpc for a progenitor mass of 30 for the case
of normal (inverted) mass ordering. The pointing ability of the CCSN is
evaluated by using the accumulated event anisotropy of the inverse beta decay
interactions from pre-SN or SN neutrinos, which, along with the early alert,
can play important roles for the followup multi-messenger observations of the
next Galactic or nearby extragalactic CCSN.Comment: 24 pages, 9 figure
- …