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This paper investigates the nonlinear unscented Kalman filtering (UKF) problem for discrete nonlinear dynamic systems with
random parameters. We develop an improved unscented transformation by incorporating the random parameters into the state
vector to enlarge the number of sigma points. The theoretical analysis reveals that the approximated mean and covariance via
the improved unscented transformation match the true values correctly up to the third order of Taylor series expansion. Based
on the improved unscented transformation, an improved UKF method is proposed to expand the application of the UKF for
nonlinear systemswith randomparameters. An application to themobile source localizationwith time difference of arrival (TDOA)
measurements and sensor position uncertainties is provided where the simulation results illustrate that the improved UKFmethod
leads to a superior performance in comparison with the normal UKF method.

1. Introduction

Since Kalman proposed his famous recursive method to
solve discrete dynamic filtering problems [1], the Kalman
filter has been widely used in many areas, ranging from
engineering to economics [2, 3]. However, the linearity of
the dynamic system, as one of the basic requirements of the
Kalman filter, is hard to satisfy in actual implementation.
On the other hand, discrete dynamic systems with random
parameters arise in many applications such as missile track
estimation, satellite navigation, maneuvering target tracking,
and economic forecast [4–8].

For the linear discrete dynamic system where the state
transition and measurement matrices are random param-
eters, De Koning [4] provides a linear minimum variance
recursive estimator without rigorous derivation. By convert-
ing the system to a linear dynamic system with deterministic
parameter matrices and state-dependent noises, Luo et al.
[6] propose the optimal linear filtering with the form of a
modified Kalman filtering.

Unlike the filtering problem in linear dynamic systems
with randomparameters, which has been extensively studied,

the research on the filtering for nonlinear dynamic systems
with random parameters has seldom been reported in the
literature.Themain challenge lies in how to transform a prob-
ability density function (pdf) through a general nonlinear
function which contains random parameters.

In order tomake the Kalman filter applicable to nonlinear
dynamic systems, the extended Kalman filter (EKF) [9],
based on the first-order approximation in the Taylor series
expansion of a nonlinear function, is proposed. Although
the EKF method maintains the computationally efficient
update form of the Kalman filter, its estimation accuracy may
be unsatisfactory due to neglecting the higher-order terms
of nonlinear system function [10]. Also, the EKF requires
the calculation of the Jacobian matrix, which is difficult to
implement in practical applications [11].

Since the seminal work of Julier et al. in 1995 [12], the
unscented Kalman filter (UKF), which is an extension of the
Kalman filter, reducing the linearization errors of the EKF,
has been an object of great interest in nonlinear filtering
[13–17]. The UKF is a derivative-free filter which combines
the concept of unscented transformation with the linear
update structure of the Kalman filtering [12]. In addition, the
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UKFmethod is based on statistical approximations of system
equations without requiring the calculation of the Jacobian
matrix [13].

The fundamental of UKF is the unscented transformation
which uses a set of sigma points to propagate the mean and
covariancematrix [13].The sigma points are deterministically
calculated from the mean and square-root decomposition
of the covariance matrix of the a priori random variable.
By applying the nonlinear system function to each sigma
point to obtain transformed vectors, the ensemble mean and
covariance of the transformed vectors give an estimate of
the true mean and covariance. In theory, if the nonlinear
system function is completely specified, the unscented trans-
formation can capture the posterior mean and covariance
of a random variable with symmetric pdf accurately up to
the third order of Taylor series expansion [18], leading to a
superior performance in comparison with the EKF method.

However, when the nonlinear system function contains
random parameters, the step of transforming the sigma
points to transformed vectors is unrealizable. One method
to deal with this problem is to neglect the randomness of
these parameters by using the nominal parameters in the
transforming procedure. In intuition, this will lead to unex-
pected error in the corresponding unscented transformation,
especially when the true parameters are far from the nominal
parameters.

The key motivation of this paper is to overcome the dif-
ficulty of unscented transformation with random parameters
and expand the application of the UKF for the nonlinear state
estimation. Hence, we focus on the design of an improved
unscented transformation by regarding the random param-
eters as part of the state to augment the state vector. In
the corresponding improved unscented transformation, the
number of sigma points is enlarged due to the increased
dimension of the state vector. In addition, each improved
sigma point contains samples of both the state and the
random parameters, so there are no unknown parameters
involved in the step of transforming the sigma points.

Our main contributions in this paper include the fol-
lowing: (i) An improved unscented transformation and the
corresponding improved UKF method are proposed to deal
with the nonlinear dynamic systemwith random parameters;
(ii) the performance analysis is provided which shows that
the approximated mean and covariance via the improved
unscented transformation match the true values correctly
up to the third order of Taylor series expansion when the
nonlinear system function contains random parameters.

An application of the proposed improvedUKFmethod to
themobile source localization problem is provided, where we
consider source localization by a network of passive sensors
using noisy time difference of arrival (TDOA)measurements.
Extensive studies for the static source localization by TDOA
measurements can be found in [19, 20]. However, in practice,
the emitter sourcemay not be static, which could bemounted
on-board of dynamic mobile platforms [21]. In addition,
accurate sensor location information may not be available
[20]. For instance, in modern localization applications,
sensors could be deployed randomly in a field and their
nominal locations may not be accurate. The mobile source

localization problem with sensor location uncertainties can
be described as a discrete nonlinear dynamic system with
random parameters.

The Monte Carlo simulations are carried out to compare
the localization performance of the improved UKF method
and the normal UKF method. The results indicate that the
root of mean squared error (RMSE) of mobile localization is
evidently decreased by the improved UKFmethod, especially
when the sensor position uncertainty level is high, which
corroborates that the proposed improved UKF method can
improve the estimation accuracy of the nonlinear dynamic
systems with random parameters.

The remainder of the paper is organized as follows.
Section 2 briefly describes the nonlinear system model
and the unscented Kalman filter. Section 3 presents the
improved unscented Kalman filteringmethod for the nonlin-
ear dynamic systemwith random parameters. An application
to the mobile source localization problem and the Monte
Carlo simulation results are provided in Section 4 and
Section 5 gives some concluding remarks.

Throughout this paper, the transpose and inverse of
matrix X are denoted by X󸀠 and X−1, respectively, the “−”
and “+” superscripts denote that the estimate is a priori and
a posteriori estimate, respectively, ‖ ⋅ ‖ means the Euclidean
norm, and 𝐸(⋅) is the mathematical expectation.

2. Nonlinear and Unscented Kalman Filter

The unscented Kalman filter provides a suboptimal solution
for the stochastic filtering problem of a nonlinear discrete-
time, dynamic system in the form

x𝑘 = 𝑓 (x𝑘−1) + w𝑘,
y𝑘 = ℎ (x𝑘) + k𝑘, (1)

where 𝑘 is the discrete-time instant, x𝑘 ∈ R𝑛𝑥 is the
state vector, y𝑘 ∈ R𝑛𝑦 is the measurement output, and𝑓(⋅) and ℎ(⋅) are the process and measurement functions,
respectively. The vectors w𝑘 and k𝑘 are two zero-mean white
Gaussian noise processes with covariance matrixes Q𝑤 and
QV, respectively.The noise termsw𝑘 and k𝑘 are assumed to be
uncorrelated.

The goal of the stochastic filtering is to estimate the state
x𝑘 as new measurements y𝑘 are acquired. When the process
and measurement functions are linear to the state vector,
the celebrated Kalman filter provides the optimal solution
with respect to the minimum variance (MV) criterion [22].
However, in the case of nonlinear systems, such optimal
solution tends to be computationally intractable [18, 23].
Therefore, suboptimal approaches are developed such as
extended Kalman filter (EKF) [9] and unscented Kalman
filter (UKF) [13].

The EKF works on the principle that a linearized trans-
formation of means and covariances is approximately equal
to the true nonlinear transformation, but this approximation
could be unsatisfactory in practice. In the following, we will
briefly describe the unscented transformation which is the
key technique of the UKF.



Discrete Dynamics in Nature and Society 3

2.1. Unscented Transformation. Suppose that we have a vector
x ∈ R𝑛𝑥 with known mean x and covariance P, and its pdf is
symmetric around its mean vector. For a nonlinear function
y = ℎ(x), we want to approximate the mean and covariance
of y. The first step of the unscented transformation is to
find a set of deterministic vectors called sigma points whose
ensemble weighted mean and covariance are equal to x and
P, respectively, which can be realized as follows:

x(𝑗) = x + x̃(𝑗), 𝑗 = 1, . . . , 2𝑛𝑥, (2)

where

x̃(𝑗) = (√𝑛𝑥P)󸀠
𝑗
, 𝑗 = 1, . . . , 𝑛𝑥,

x̃(𝑛𝑥+𝑗) = −(√𝑛𝑥P)󸀠
𝑗
, 𝑗 = 1, . . . , 𝑛𝑥, (3)

√𝑛𝑥P is the matrix square root of 𝑛𝑥P such that(√𝑛𝑥P)󸀠√𝑛𝑥P = 𝑛𝑥P, and (√𝑛𝑥P)𝑗 is the 𝑗th row of √𝑛𝑥P.
The weighting coefficients are given as

W(𝑗) = 12𝑛𝑥 , 𝑗 = 1, . . . , 2𝑛𝑥. (4)

Then, we transform each sigma point in (2) using the
nonlinear function ℎ(⋅) and approximate the mean of y by
taking the weighted sum of the transformed sigma points.
Specifically, let y denote the truemean of y.The approximated
mean of y is denoted as ŷ and computed as follows:

ŷ = 2𝑛𝑥∑
𝑗=1

W(𝑗)y(𝑗), y(𝑗) = ℎ (x(𝑗)) , 𝑗 = 1, . . . , 2𝑛𝑥. (5)

Let Py denote the true covariance of y. The approximated
covariance of y is denoted as P̂y and computed as follows:

P̂y = 2𝑛𝑥∑
𝑗=1

W(𝑗) (y(𝑗) − ŷ) (y(𝑗) − ŷ)󸀠 . (6)

Theunscented transformations (5) and (6) aremore accu-
rate than the linearizationmethod for propagatingmeans and
covariances of nonlinear functions, which is summarized in
the following proposition.

Proposition 1 (see [18]). For random vector x with a sym-
metric pdf around its mean, if the nonlinear function y =ℎ(x) is completely specified, then the approximated mean and
covariance of y via the unscented transformations (5)-(6)
match the true mean and covariance of y correctly up to the
third order.

2.2. Unscented Kalman Filter. The unscented transformation
can be generalized to give the unscented Kalman filter, which
keeps the structure of the Kalman filter that includes one
prediction (or a time update) step and one correction (or a
measurement update) step.

For the discrete nonlinear system (1), the unscented
Kalman filter is initialized as follows:

x̂+0 = 𝐸 (x0) ,
P+0 = 𝐸 [(x0 − x̂+0 ) (x0 − x̂+0 )󸀠] . (7)

Suppose that, at time step 𝑘, x̂+𝑘−1 andP+𝑘−1 are given.TheUKF
algorithm can be summarized in Algorithm 2.

Algorithm 2 (the unscented Kalman filter).

(1) Choose the sigma points x̂(𝑗)
𝑘−1

as specified in (2) with
appropriate changes, that is,

x̂(𝑗)
𝑘−1
= x̂+𝑘−1 + x̃(𝑗)

𝑘−1
, 𝑗 = 1, . . . , 2𝑛𝑥

x̃(𝑗)
𝑘−1
= (√𝑛𝑥P+𝑘−1)󸀠𝑗 , 𝑗 = 1, . . . , 𝑛𝑥,

x̃(𝑛𝑥+𝑗)
𝑘−1

= − (√𝑛𝑥P+𝑘−1)󸀠𝑗 , 𝑗 = 1, . . . , 𝑛𝑥.
(8)

(2) Use the completely specified motion function 𝑓(⋅) to
transform the sigma points into x̂(𝑗)

𝑘
vectors:

x̂(𝑗)
𝑘
= 𝑓 (x̂(𝑗)

𝑘−1
) . (9)

(3) Combine the x̂(𝑗)
𝑘

vectors to obtain the prediction
estimate at time 𝑘

x̂−𝑘 = 12𝑛𝑥 2𝑛𝑥∑𝑗=1x̂(𝑗)𝑘 (10)

and the corresponding error covariance

P−𝑘 = 12𝑛𝑥 2𝑛𝑥∑𝑗=1 (x̂(𝑗)𝑘 − x̂−𝑘 ) (x̂(𝑗)𝑘 − x̂−𝑘 )󸀠 +Q𝑤. (11)

(4) Use the completely specified measurement functionℎ(⋅) to transform the sigma points into ŷ(𝑗)
𝑘

vectors:

ŷ(𝑗)
𝑘
= ℎ (x̂(𝑗)

𝑘−1
) . (12)

(5) Combine the ŷ(𝑗)
𝑘

vectors to obtain the predicted
measurement at time 𝑘

ŷ𝑘 = 12𝑛𝑥 2𝑛𝑥∑𝑗=1ŷ(𝑗)𝑘 (13)

and the corresponding covariance

P𝑦
𝑘
= 12𝑛𝑥 2𝑛𝑥∑𝑗=1 (ŷ(𝑗)𝑘 − ŷ𝑘) (ŷ(𝑗)𝑘 − ŷ𝑘)󸀠 +QV. (14)
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(6) Estimate the cross covariance between x̂−𝑘 and ŷ𝑘:

P𝑥𝑦
𝑘
= 12𝑛𝑥 2𝑛𝑥∑𝑗=1 (x̂(𝑗)𝑘 − x̂−𝑘 ) (ŷ(𝑗)𝑘 − ŷ𝑘)󸀠 . (15)

(7) The measurement update of the state estimate can be
performed following the normal Kalman filter:

K𝑘 = P𝑥𝑦
𝑘
(P𝑦
𝑘
)−1 ,

x̂+𝑘 = x̂−𝑘 + K𝑘 (y𝑘 − ŷ𝑘) ,
P+𝑘 = P−𝑘 − K𝑘P

𝑦

𝑘
K󸀠𝑘. (16)

The algorithm above assumes that the motion and
measurement functions are completely known. In practical
applications, the motion and measurement functions may
contain parameters that are not specified andmay be random
with known distributions. In such cases, the previous UKF
algorithm can not be directly applied.

3. Improved Unscented Kalman Filter

In this section, we propose an improved UKFmethod to deal
with the filtering problem in nonlinear dynamic systems with
randomparameters. In the following, wewill firstly introduce
the improved unscented transformation which propagates
the mean and covariance of a random vector through a
nonlinear function with random parameters.

3.1. Improved Unscented Transformation. Suppose that we
have a vector x ∈ R𝑛𝑥 with known mean x and covariance
P, and its pdf is symmetric around its mean vector. For a
nonlinear function y = ℎ(x, 𝜃), the random parameter 𝜃 ∈
R𝑛𝜃 has known mean 𝜃 and covariance P𝜃 and also has a
symmetric pdf. In addition, the parameter 𝜃 is uncorrelated
with x.

In the normal unscented transformation, a set of sigma
points x(𝑗) (2) is generated, and each sigma point is trans-
formed by the known nonlinear function ℎ(⋅) to approximate
the mean and covariance of y. However, when the functionℎ(⋅) is nonlinear with respect to random parameter 𝜃, the step
of transforming the sigma points is unrealizable.

In order to deal with this problem, we augment the
random parameter 𝜃 onto the state vector as follows:

x̌ = [x󸀠, 𝜃󸀠]󸀠 ∈ R𝑛𝑥+𝑛𝜃 . (17)

The mean and covariance of the augment vector x̆ are𝐸 (x̌) = x̌ = [x󸀠, 𝜃󸀠]󸀠 ,
Cov (x̌) = P̌ = (P 0

0 P𝜃
) . (18)

Based on the augmentmodel, the number of sigma points
is enlarged to 2(𝑛𝑥 + 𝑛𝜃). The new sigma points are generated
as follows:

x̌(𝑗) = x̌ + ̃̌x(𝑗)𝑘 , 𝑗 = 1, . . . , 2 (𝑛𝑥 + 𝑛𝜃) , (19)

where ̃̌x(𝑗) = (√2 (𝑛𝑥 + 𝑛𝜃) P̌)󸀠
𝑗
, 𝑗 = 1, . . . , 𝑛𝑥 + 𝑛𝜃,̃̌x(𝑛𝑥+𝑛𝜃+𝑗) = −(√2 (𝑛𝑥 + 𝑛𝜃) P̌)󸀠
𝑗
, 𝑗 = 1, . . . , 𝑛𝑥 + 𝑛𝜃.

(20)

The corresponding weighting coefficients are given as

W̌(𝑗) = 12 (𝑛𝑥 + 𝑛𝜃) , 𝑗 = 1, . . . , 2 (𝑛𝑥 + 𝑛𝜃) . (21)

Because we regard both the vector x and the random
parameter 𝜃 as the unknown parameters in the augment
model, each sigma point can be divided into two parts, that
is,

x̌(𝑗) = [x(𝑗), 𝜃(𝑗)] , (22)

where x(𝑗) = x̌(𝑗)(1 : 𝑛𝑥) represents the sigma point of the
vector x and 𝜃(𝑗) = x̌(𝑗)(𝑛𝑥 + 1 : 𝑛𝑥 + 𝑛𝜃) represents the sigma
point of the parameter 𝜃. As a result, the transformed sigma
points can be computed as follows:

y(𝑗) = ℎ (x(𝑗), 𝜃(𝑗)) , 𝑗 = 1, . . . , 2 (𝑛𝑥 + 𝑛𝜃) . (23)

Let y denote the true mean of y. The approximated mean of
the improved unscented transformation is denoted as ŷ and
computed as follows:

ŷ = 2(𝑛𝑥+𝑛𝜃)∑
𝑗=1

W̌(𝑗)y(𝑗). (24)

Let Py denote the true covariance of y. The approximated
covariance of the improved unscented transformation is
denoted as P̂y and computed as follows:

P̂y = 2(𝑛𝑥+𝑛𝜃)∑
𝑗=1

W̌(𝑗) (y(𝑗) − ŷ) (y(𝑗) − ŷ)󸀠 . (25)

The improved unscented transformations (24) and (25)
incorporate the information of the random parameter 𝜃, so
they are intuitively more accurate than the normal unscented
transformations (5) and (6) which ignore the randomness
of 𝜃. The theoretical analysis of the improved unscented
transformations is given in the following theorems.

Theorem3. For random vector xwith a symmetric pdf around
its mean, if the nonlinear function y = ℎ(x, 𝜃) contains
unknown random parameter 𝜃, the approximated mean of y
via the improved unscented transformation (24) matches the
true mean of y correctly up to the third order.

Proof. We firstly expand y = ℎ(x, 𝜃) in a Taylor series around
x̌ = [x󸀠, 𝜃󸀠]󸀠 as follows:

y = ℎ (x, 𝜃)= ℎ (x, 𝜃) + 𝐷̃̌xℎ + 12!𝐷2̃̌xℎ + 13!𝐷3̃̌xℎ + ⋅ ⋅ ⋅ , (26)
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where ̃̌x = x̌ − x̌ and the operation𝐷𝑘̃̌xℎ is defined as

𝐷𝑘̃̌xℎ = (𝑛𝑥+𝑛𝜃∑
𝑗=1

̃̌x𝑗 𝜕ℎ𝜕x̌𝑗 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨x̌=x̌)𝑘 . (27)

The mean of y can therefore be expanded as

y = 𝐸(ℎ (x, 𝜃) + 𝐷̃̌xℎ + 12!𝐷2̃̌xℎ + 13!𝐷3̃̌xℎ + ⋅ ⋅ ⋅)= ℎ (x, 𝜃) + 𝐸(𝐷̃̌xℎ + 12!𝐷2̃̌xℎ + 13!𝐷3̃̌xℎ + ⋅ ⋅ ⋅) . (28)

We can see that

𝐸 (𝐷̃̌xℎ) = 𝐸(𝑛𝑥+𝑛𝜃∑
𝑗=1

̃̌x𝑗 𝜕ℎ𝜕x̌𝑗 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨x̌=x̌)= 𝑛𝑥+𝑛𝜃∑
𝑗=1

𝐸 (̃̌x𝑗) 𝜕ℎ𝜕x̌𝑗 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨x̌=x̌ = 0
(29)

due to 𝐸(̃̌x) = 0. Because both x and 𝜃 have a symmetric pdf
around the mean vector, we can verify that

𝐸 (𝐷3̃̌xℎ) = 𝐸[[(𝑛𝑥+𝑛𝜃∑𝑗=1 ̃̌x𝑗 𝜕ℎ𝜕x̌𝑗 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨x̌=x̌)
3]] = 0. (30)

Similarly, all of the odd terms in (28) will be equal to zero,
which leads to the simplification

y = ℎ (x, 𝜃) + 𝐸( 12!𝐷2̃̌xℎ + 14!𝐷4̃̌xℎ + ⋅ ⋅ ⋅) . (31)

Now we compute the value of ŷ by expanding each y(𝑗) in
(24) in a Taylor series around x̌ as follows:

ŷ = 12 (𝑛𝑥 + 𝑛𝜃)⋅ 2(𝑛𝑥+𝑛𝜃)∑
𝑗=1

(ℎ (x, 𝜃) + 𝐷̃̌x(𝑗)ℎ + 12!𝐷2̃̌x(𝑗)ℎ + ⋅ ⋅ ⋅) . (32)

Because ̃̌x(𝑗) = −̃̌x(𝑛𝑥+𝑛𝜃+𝑗) (𝑗 = 1, . . . , 𝑛𝑥 + 𝑛𝜃), for any integer𝑘 > 0, we have
2(𝑛𝑥+𝑛𝜃)∑
𝑗=1

𝐷2𝑘+1
̃̌x
(𝑗) ℎ = 2(𝑛𝑥+𝑛𝜃)∑

𝑗=1

[[(𝑛𝑥+𝑛𝜃∑𝑖=1 ̃̌x(𝑗)𝑖 𝜕ℎ𝜕x̌𝑗 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨x̌=x̌)2𝑘+1]]= 2(𝑛𝑥+𝑛𝜃)∑
𝑗=1

[𝑛𝑥+𝑛𝜃∑
𝑖=1

(̃̌x(𝑗)𝑖 )2𝑘+1 𝜕2𝑘+1ℎ𝜕x̌2𝑘+1𝑗 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨x̌=x̌]
= 𝑛𝑥+𝑛𝜃∑
𝑖=1

[[2(𝑛𝑥+𝑛𝜃)∑
𝑗=1

(̃̌x(𝑗)𝑖 )2𝑘+1 𝜕2𝑘+1ℎ𝜕x̌2𝑘+1𝑗 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨x̌=x̌]] = 0.
(33)

Therefore, all of the odd terms in (32) evaluate to zero and we
have

ŷ= ℎ (x, 𝜃)
+ 12 (𝑛𝑥 + 𝑛𝜃) 2(𝑛𝑥+𝑛𝜃)∑

𝑗=1

( 12!𝐷2̃̌x(𝑗)ℎ + 14!𝐷4̃̌x(𝑗)ℎ + ⋅ ⋅ ⋅) .
(34)

After some tedious calculation, we can verify that

12 (𝑛𝑥 + 𝑛𝜃) 2(𝑛𝑥+𝑛𝜃)∑
𝑗=1

12!𝐷2̃̌x(𝑗)ℎ = 12 𝑛𝑥+𝑛𝜃∑
𝑖,𝑗=1

P̌𝑖𝑗
𝜕2ℎ𝜕x̌𝑖𝜕x̌𝑗 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨x̌=x̌= 12!𝐸 (𝐷2̃̌xℎ) . (35)

It can be seen that ŷ (the approximated mean of y) matches
the true mean of y correctly up to the third order.

Theorem4. For random vector xwith a symmetric pdf around
its mean, if the nonlinear function y = ℎ(x, 𝜃) contains
unknown random parameter 𝜃, the approximated covariance
of y via the improved unscented transformation (25) matches
the true covariance of y correctly up to the third order.

Proof. The true covariance of y is given as

Py = 𝐸 [(y − y) (y − y)󸀠] . (36)

By substituting (26) and (31) into (36) and using the same type
of reasoning in the proof ofTheorem 3, we have that all of the
odd-powered terms evaluate to zero. This leads to

Py = 𝐸 [𝐷̃̌xℎ (𝐷̃̌xℎ)󸀠] + 𝐸[[𝐷̃̌xℎ (𝐷3̃̌xℎ)
󸀠3!

+ 𝐷2̃̌xℎ (𝐷2̃̌xℎ)󸀠2!2! + 𝐷3̃̌xℎ (𝐷̃̌xℎ)󸀠3! ]] + 𝐸[𝐷2̃̌xℎ2! ]⋅ 𝐸 [𝐷2̃̌xℎ2! ]󸀠 + ⋅ ⋅ ⋅
(37)

The first term on the right side of the equation above can be
written as

𝐸 [𝐷̃̌xℎ (𝐷̃̌xℎ)󸀠] = HP̌H󸀠, (38)

whereH is the partial derivative matrix at x̌ = x̌.
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On the other hand, after some tedious calculation, the
approximate covariance P̂y in (25) can be written as

P̂y = 12 (𝑛𝑥 + 𝑛𝜃) 2(𝑛𝑥+𝑛𝜃)∑
𝑗=1

(𝐷̃̌x(𝑗)ℎ) (𝐷̃̌x(𝑗)ℎ)󸀠 +HOT

= 12 (𝑛𝑥 + 𝑛𝜃)
⋅ 2(𝑛𝑥+𝑛𝜃)∑
𝑗=1

𝑛𝑥+𝑛𝜃∑
𝑖,𝑘=1

(̃̌x(𝑗)𝑖 𝜕ℎ (x̌)𝜕x̌𝑖 )(̃̌x(𝑗)𝑘 𝜕ℎ (x̌)𝜕x̌𝑘 )󸀠+HOT,
(39)

whereHOTmeans higher-order terms (i.e., terms to the forth
power and higher). Now recall that ̃̌x(𝑗)𝑖 = −̃̌x(𝑛𝑥+𝑛𝜃+𝑗)𝑖 and̃̌x(𝑗)𝑘 = −̃̌x(𝑛𝑥+𝑛𝜃+𝑗)𝑘 for 𝑗 = 1, . . . , 𝑛𝑥 + 𝑛𝜃; therefore, the
covariance approximation becomes

P̂y

= 1𝑛𝑥 + 𝑛𝜃 𝑛𝑥+𝑛𝜃∑𝑗=1 𝑛𝑥+𝑛𝜃∑𝑖,𝑘=1 (̃̌x(𝑗)𝑖 𝜕ℎ (x̌)𝜕x̌𝑖 )(̃̌x(𝑗)𝑘 𝜕ℎ (x̌)𝜕x̌𝑘 )󸀠+HOT = HP̌H󸀠 +HOT.
(40)

Comparing (40) with the true covariance of y from (37), we
see that P̂y in (25) approximates the true covariance of y up
to the third order.

3.2. Improved Unscented Kalman Filter. The improved
unscented transformation developed in the previous
subsection can be generalized to give the improved
unscented Kalman filter for the discrete-time nonlinear
system which contains random parameters, that is,

x𝑘 = 𝑓 (x𝑘−1, 𝜃) + w𝑘,
y𝑘 = ℎ (x𝑘, 𝜃) + k𝑘, (41)

where the motion function 𝑓(⋅) and the measurement func-
tion ℎ(⋅) are nonlinear with respect to not only the state vector
x𝑘 but also the random parameter 𝜃. The other notations are
the same as that of model (1). Assume that the parameter 𝜃 ∈
R𝑛𝜃 has knownmean 𝜃 and covarianceP𝜃 and is uncorrelated
with the state vector x𝑘 as well as the noise vectors w𝑘 and k𝑘.

Following the augment method of the improved
unscented transformation, we give the augment model of the
discrete-time nonlinear system (41) as follows:

x̌𝑘 = 𝑓 (x̌𝑘−1) + w̌𝑘,
y𝑘 = ℎ (x̌𝑘) + k𝑘, (42)

where

x̌𝑘 = [x󸀠𝑘, 𝜃󸀠]󸀠 ,
w̌𝑘 = [w̌󸀠𝑘, 0󸀠]󸀠 . (43)

With the initial condition (7), the improved unscented
Kalman filter can be initialized as follows:̂̌x+0 = [(x̂+0 )󸀠 , 𝜃󸀠]󸀠 ,

P̌+0 = (P+0 0

0 P𝜃
) . (44)

Suppose that, at time step 𝑘, ̂̌x+𝑘−1 and P̌+𝑘−1 are given. For the
sake of brevity, we denote ̌𝑛 = 𝑛𝑥 + 𝑛𝜃. The improved UKF
algorithm can be summarized in Algorithm 5.

Algorithm 5 (the improved unscented Kalman filter).

(1) Choose 2 ̌𝑛 sigma points ̂̌x(𝑗)𝑘−1 as specified in (19) with
appropriate changes, that is,̂̌x(𝑗)𝑘−1 = ̂̌x+𝑘−1 + ̃̌x(𝑗)𝑘−1, 𝑗 = 1, . . . , 2 ̌𝑛,̃̌x(𝑗)𝑘−1 = (√ ̌𝑛P̌+

𝑘−1
)󸀠
𝑗
, 𝑗 = 1, . . . , ̌𝑛,̃̌x( ̌𝑛+𝑗)𝑘−1 = −̃̌x(𝑗)𝑘−1, 𝑗 = 1, . . . , ̌𝑛.

(45)

(2) Transform the sigma points ̂̌x(𝑗)𝑘−1 into ̂̌x(𝑗)𝑘 as follows:̂̌x(𝑗)𝑘 = 𝑓 (x̂(𝑗)𝑘−1, 𝜃(𝑗)𝑘−1) , (46)

where x̂(𝑗)
𝑘−1
= ̂̌x(𝑗)𝑘−1(1 : 𝑛𝑥) and 𝜃(𝑗)𝑘−1 = ̂̌x(𝑗)𝑘−1(𝑛𝑥 + 1 : ̌𝑛).

(3) Combine the ̂̌x(𝑗)𝑘 vectors to obtain the prediction
estimate at time 𝑘̂

x̌
−

𝑘 = 12 ̌𝑛 2 ̌𝑛∑
𝑗=1

̂̌x(𝑗)𝑘 (47)

and the corresponding error covariance

P̌−𝑘 = 12 ̌𝑛 2 ̌𝑛∑
𝑗=1

(̂̌x(𝑗)𝑘 − ̂̌x−𝑘)(̂̌x(𝑗)𝑘 − ̂̌x−𝑘)󸀠 + Q̌𝑤, (48)

where Q̌𝑤 = ( Q𝑤 0
0 0 ) .

(4) Transform the sigma points ̂̌x(𝑗)𝑘−1 into ̂̌y(𝑗)𝑘 vectors:̂̌y(𝑗)𝑘 = ℎ (x̂(𝑗)𝑘−1, 𝜃(𝑗)𝑘−1) . (49)

(5) Combine the ̂̌y(𝑗)𝑘 vectors to obtain the predicted
measurement at time 𝑘̂̌y𝑘 = 12 ̌𝑛 2 ̌𝑛∑

𝑗=1

̂̌y(𝑗)𝑘 (50)
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and the corresponding covariance

P̌𝑦
𝑘
= 12 ̌𝑛 2 ̌𝑛∑
𝑗=1

(̂̌y(𝑗)𝑘 − ̂̌y𝑘)(̂̌y(𝑗)𝑘 − ̂̌y𝑘)󸀠 +QV. (51)

(6) Estimate the cross covariance between ̂̌x−𝑘 and ̂̌y𝑘:
P̌𝑥𝑦
𝑘
= 12 ̌𝑛 2 ̌𝑛∑
𝑗=1

(̂̌x(𝑗)𝑘 − ̂̌x−𝑘)(̂̌y(𝑗)𝑘 − ̂̌y𝑘)󸀠 . (52)

(7) The measurement update of the state estimate can be
performed as follows:

Ǩ𝑘 = P̌𝑥𝑦
𝑘
(P̌𝑦
𝑘
)−1 ,̂̌x+𝑘 = ̂̌x−𝑘 + Ǩ𝑘 (y𝑘 − ̂̌y𝑘) ,

P̌+𝑘 = P̌−𝑘 − Ǩ𝑘P̌
𝑦

𝑘
Ǩ󸀠𝑘. (53)

The proposed improved UKF method provides a sub-
optimal solution for the stochastic filtering problem of a
nonlinear discrete-time dynamic system which contains ran-
dom parameters. The main difference between the improved
UKF algorithm and the normal UKF algorithm lies in the
construction of the sigma points.The number of sigma points
of the improved UKF algorithm is larger than that of the
normal UKF algorithm, so generally the proposed improved
UKF method requires higher computational complexity.
However, the advantage of the improved UKF method is
the increased accuracy of the state estimation which can be
verified by the numerical results in the following section.

4. An Application to Mobile
Source Localization

Consider a wireless sensor network with 𝑛 passive sensor
nodes, distributed on a 2D plane, to localize one moving
source. Let the state vector of the mobile source be x𝑘 =[u󸀠𝑘, k󸀠𝑘]󸀠 ∈ R4, which includes the position and velocity
components.

Without loss of generality, let the first sensor be the
reference. The TDOA measurement model [20] between
sensor pair 𝑖 (𝑖 = 2, . . . , 𝑛) and 1 is

𝑡𝑖1 (u𝑘) = 󵄩󵄩󵄩󵄩󵄩u𝑘 − s0𝑖
󵄩󵄩󵄩󵄩󵄩𝑐 − 󵄩󵄩󵄩󵄩󵄩u𝑘 − s01

󵄩󵄩󵄩󵄩󵄩𝑐 + Δ𝑡𝑖𝑘, (54)

where s0𝑖 is the true position of the 𝑖th sensor, 𝑟0𝑖 (u𝑘) =‖u𝑘 − s0𝑖 ‖ is the true distance from the source to the 𝑖th
sensor, and 𝑐 is the signal propagation speed.The vectorΔt𝑘 =[Δ𝑡2𝑘, . . . , Δ𝑡𝑛𝑘]󸀠 is zero-meanGaussian noisewith covariance
Q𝑡. In simplicity, (54) is expressed in the vector form

t𝑘 = [𝑡21 (u𝑘) , . . . , 𝑡𝑛1 (u𝑘)] . (55)

In practice, the true sensor positions s0 = [s0󸀠1 , . . . , s0󸀠4 ]󸀠
are not known, and only their nominal values s =

Table 1: Nominal positions (in meters) of sensors.

Sensor number 𝑖 𝑥𝑖 𝑦𝑖
1 100 100
2 100 −100
3 −100 −100
4 −100 100

[s󸀠1, s󸀠2, . . . , s󸀠4]󸀠 are available for source localization. More
precisely, s0𝑖 and s𝑖 are related by

s0𝑖 = s𝑖 + Δs𝑖, (56)

where Δs𝑖 is the sensor position noise and the corresponding
noise vector Δs = [Δs󸀠1, Δs󸀠2, . . . , Δs󸀠𝑛]󸀠 is assumed to be zero-
mean Gaussian with covariance matrixQ𝑠.

Because the TDOAmeasurement vector (55) is nonlinear
with respect to the state vector x𝑘 as well as the true sensor
locations s0, the mobile source localization problem can be
described as the following discrete-time nonlinear system:

t𝑘 = f (x𝑘, s0) + Δt𝑘, (57)

where s0 can be regarded as unknown random parameters.
Thus, we can apply the proposed improved UKF method to
dynamically estimate the state vector.

In order to show the performance of the proposed
improved UKF method, we apply it to two localization sce-
narios and compare it with the normal UKF method, which
ignores the random uncertainties in the sensor locations,
through Monte Carlo simulations.

4.1. Scenario 1. This simulation scenario contains 𝑛 = 4
sensors, and their nominal positions are given in Table 1. The
motion model of the mobile source is assumed to be a nearly
constant velocity model as

x𝑘 =(1 0 0.01 00 1 0 0.010 0 1 00 0 0 1 ) x𝑘−1

+(0.01 00 0.010.1 00 0.1)w𝑘−1,
(58)

where w𝑘−1 is zero-mean Gaussian noise with covariance
matrix Q𝑤 = 0.01I. The initial value of the state x0 is
a Gaussian vector with zero mean and covariance P+0 =
diag{100, 100, 0.01, 0.01}. The trajectory of the mobile source
in 100 time instants is shown in Figure 1.

The TDOA measurement covariance Q𝑡 = (0.5/𝑐)2T,
where T is the (𝑛 − 1) × (𝑛 − 1)matrix with 1 in the diagonal
elements and 0.5 otherwise. The localization accuracy is
evaluated by the root of mean squared error which is defined
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Figure 1: The trajectory of the mobile source in Scenario 1.
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Figure 2: Comparison of the mobile localization accuracy with low
level sensor position uncertainties in Scenario 1.

as RMSE(u𝑘) = √∑𝐿𝑙=1 ‖û𝑘 − u𝑘‖2/𝐿, where û𝑘 = x̂𝑘(1 : 2) is
the estimate of the source position at ensemble 𝑙 and 𝐿 = 1000
is the number of ensemble runs.

In theMonte Carlo simulations, we consider three sensor
position uncertainty levels which are referred to as the low
level with 𝜎𝑠 = 0.1, the moderate level with 𝜎𝑠 = 1, and the
high level with 𝜎𝑠 = 2.

Figure 2 plots the simulation results with time instant
varying from 1 to 100 when the sensor position uncertainty
level is low. It is evident from Figure 2 that RMSE of the
proposed improved UKF method (represented by dashed
line) is smaller than that of the normal UKF approach
(represented by solid line) which ignores the sensor position
uncertainties.

Figure 3 plots the RMSEs of the two methods in the case
of moderate sensor position uncertainty level, that is, 𝜎𝑠 =1. We can see that both of them are generally larger than
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Figure 3: Comparison of themobile localization accuracywithmild
level sensor position uncertainties in Scenario 1.
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Figure 4: Comparison of themobile localization accuracywith high
level sensor position uncertainties in Scenario 1.

the corresponding RMSEs in Figure 2. As we expected, the
performance of the proposed improvedUKFmethod ismuch
better than that of the normal UKF approach. In addition,
the improvement is larger than that of the low level case in
Figure 2.

Finally, we take the high sensor position uncertainty level,
that is,𝜎𝑠 = 2.The numerical simulation results are illustrated
in Figure 4, which indicates that the RMSE of the normal
UKF approach is nearly twice asmuch as that of the proposed
improved UKF method. Comparing the results in Figures 2–
4, we can see that the influence of the random sensor position
uncertainties on the localization performance is quite evident
in Scenario 1. The proposed improved UKF method can
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Figure 5: Comparison of the mobile localization accuracy with low
level sensor position uncertainties in Scenario 2.

efficiently decrease the RMSE, especially when the sensor
position uncertainty level is high.

4.2. Scenario 2. In this simulation scenario, we consider
the sensor geometry is random and the number of sensors𝑛 = 4. The true position of each sensor is uniformly
distributed in a square of [−100, 100]m × [−100, 100]m
at each ensemble in Monte Carlo simulations. The TDOA
measurement covariance Q𝑡 = (0.1/𝑐)2T. The motion model
and the initial value of the state are generally the same as those
of Scenario 1.

In the first case, the sensor position uncertainty level
is considerably small, that is, 𝜎𝑠 = 0.1. Figure 5 plots the
RMSE of the normal UKF approach and that of the proposed
improved UKF method with time instant varying from 1 to100, which are calculated from 𝐿 = 1000Monte Carlo runs.
It can be seen that the RMSE of the proposed improved UKF
method is smaller than that of the normal UKF approach.

Then,we consider amoderate sensor position uncertainty
level, that is, 𝜎𝑠 = 1. Figure 6 plots the RMSEs of the two
methods in this case, where we can see that the performance
of the proposed improvedUKFmethod is still better than that
of the normal UKF approach with a larger improvement as in
Figure 5.

For the high sensor position uncertainty level, that is,𝜎𝑠 = 2, the simulation results are illustrated in Figure 7,
which shows that the RMSE of the normal UKF approach is
considerably larger than that of the proposed improved UKF
method.

The Monte Carlo simulation results in Figures 5–7 reveal
that the RMSEs of the proposed improved UKF are consis-
tently smaller than those of the normal UKF approach, which
corroborates that the proposed improved UKF method can
generally improve the estimation accuracy of the nonlinear
dynamic system when it contains random parameters.
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Figure 6: Comparison of themobile localization accuracywithmild
level sensor position uncertainties in Scenario 2.
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Figure 7: Comparison of themobile localization accuracy with high
level sensor position uncertainties in Scenario 2.

5. Conclusions

In this paper, an improved unscented Kalman filtering
method is explored for discrete nonlinear dynamic systems
with randomparameters. By augmenting the randomparam-
eters into the state vector, we enlarge the number of sigma
points in the improved unscented transformation. Theo-
retical analysis indicates that the approximated mean and
covariance via the improved unscented transformationmatch
the true values correctly up to the third order of Taylor series
expansion. An application to the mobile source localization
using TDOA measurements is provided, where the sensor
positions suffer from randomuncertainties.TheMonte Carlo
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simulation results show that the proposed improved UKF
method can considerably improve the estimation accuracy.
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