11 research outputs found
Q134R: Small Chemical Compound with NFAT Inhibitory Properties Improves Behavioral Performance and Synapse Function in Mouse Models of Amyloid Pathology
Inhibition of the protein phosphatase calcineurin (CN) ameliorates pathophysiologic and cognitive changes in aging rodents and mice with aging-related Alzheimer\u27s disease (AD)-like pathology. However, concerns over adverse effects have slowed the transition of common CN-inhibiting drugs to the clinic for the treatment of AD and AD-related disorders. Targeting substrates of CN, like the nuclear factor of activated T cells (NFATs), has been suggested as an alternative, safer approach to CN inhibitors. However, small chemical inhibitors of NFATs have only rarely been described. Here, we investigate a newly developed neuroprotective hydroxyquinoline derivative (Q134R) that suppresses NFAT signaling, without inhibiting CN activity. Q134R partially inhibited NFAT activity in primary rat astrocytes, but did not prevent CN-mediated dephosphorylation of a non-NFAT target, either in vivo, or in vitro. Acute (≤1 week) oral delivery of Q134R to APP/PS1 (12 months old) or wild-type mice (3–4 months old) infused with oligomeric Aβ peptides led to improved Y maze performance. Chronic (≥3 months) oral delivery of Q134R appeared to be safe, and, in fact, promoted survival in wild-type (WT) mice when given for many months beyond middle age. Finally, chronic delivery of Q134R to APP/PS1 mice during the early stages of amyloid pathology (i.e., between 6 and 9 months) tended to reduce signs of glial reactivity, prevented the upregulation of astrocytic NFAT4, and ameliorated deficits in synaptic strength and plasticity, without noticeably altering parenchymal Aβ plaque pathology. The results suggest that Q134R is a promising drug for treating AD and aging-related disorders
Intelligent image-based in situ single-cell isolation
Quantifying heterogeneities within cell populations is important for many fields including cancer research and neurobiology; however, techniques to isolate individual cells are limited. Here, we describe a high-throughput, non-disruptive, and cost-effective isolation method that is capable of capturing individually targeted cells using widely available techniques. Using high-resolution microscopy, laser microcapture microscopy, image analysis, and machine learning, our technology enables scalable molecular genetic analysis of single cells, targetable by morphology or location within the sample.Peer reviewe
High-Density Real-Time PCR-Based in Vivo Toxicogenomic Screen to Predict Organ-Specific Toxicity
Toxicogenomics, based on the temporal effects of drugs on gene expression, is able to predict toxic effects earlier than traditional technologies by analyzing changes in genomic biomarkers that could precede subsequent protein translation and initiation of histological organ damage. In the present study our objective was to extend in vivo toxicogenomic screening from analyzing one or a few tissues to multiple organs, including heart, kidney, brain, liver and spleen. Nanocapillary quantitative real-time PCR (QRT-PCR) was used in the study, due to its higher throughput, sensitivity and reproducibility, and larger dynamic range compared to DNA microarray technologies. Based on previous data, 56 gene markers were selected coding for proteins with different functions, such as proteins for acute phase response, inflammation, oxidative stress, metabolic processes, heat-shock response, cell cycle/apoptosis regulation and enzymes which are involved in detoxification. Some of the marker genes are specific to certain organs, and some of them are general indicators of toxicity in multiple organs. Utility of the nanocapillary QRT-PCR platform was demonstrated by screening different references, as well as discovery of drug-like compounds for their gene expression profiles in different organs of treated mice in an acute experiment. For each compound, 896 QRT-PCR were done: four organs were used from each of the treated four animals to monitor the relative expression of 56 genes. Based on expression data of the discovery gene set of toxicology biomarkers the cardio- and nephrotoxicity of doxorubicin and sulfasalazin, the hepato- and nephrotoxicity of rotenone, dihydrocoumarin and aniline, and the liver toxicity of 2,4-diaminotoluene could be confirmed. The acute heart and kidney toxicity of the active metabolite SN-38 from its less toxic prodrug, irinotecan could be differentiated, and two novel gene markers for hormone replacement therapy were identified, namely fabp4 and pparg, which were down-regulated by estradiol treatment
Inflammation and Cancer: Extra- and Intracellular Determinants of Tumor-Associated Macrophages as Tumor Promoters
One of the hallmarks of cancer-related inflammation is the recruitment of monocyte-macrophage lineage cells to the tumor microenvironment. These tumor infiltrating myeloid cells are educated by the tumor milieu, rich in cancer cells and stroma components, to exert functions such as promotion of tumor growth, immunosuppression, angiogenesis, and cancer cell dissemination. Our review highlights the ontogenetic diversity of tumor-associated macrophages (TAMs) and describes their main phenotypic markers. We cover fundamental molecular players in the tumor microenvironment including extra- (CCL2, CSF-1, CXCL12, IL-4, IL-13, semaphorins, WNT5A, and WNT7B) and intracellular signals. We discuss how these factors converge on intracellular determinants (STAT3, STAT6, STAT1, NF-κB, RORC1, and HIF-1α) of cell functions and drive the recruitment and polarization of TAMs. Since microRNAs (miRNAs) modulate macrophage polarization key miRNAs (miR-146a, miR-155, miR-125a, miR-511, and miR-223) are also discussed in the context of the inflammatory myeloid tumor compartment. Accumulating evidence suggests that high TAM infiltration correlates with disease progression and overall poor survival of cancer patients. Identification of molecular targets to develop new therapeutic interventions targeting these harmful tumor infiltrating myeloid cells is emerging nowadays
Exercise training worsens cardiac performance in males but does not change ejection fraction and improves hypertrophy in females in a mouse model of metabolic syndrome
Background Metabolic syndrome (MetS) refers to a cluster of co-existing cardio-metabolic risk factors, including visceral obesity, dyslipidemia, hyperglycemia with insulin resistance, and hypertension. As there is a close link between MetS and cardiovascular diseases, we aimed to investigate the sex-based differences in MetS-associated heart failure (HF) and cardiovascular response to regular exercise training (ET). Methods High-fat diet-fed male and female APOB-100 transgenic (HFD/APOB-100, 3 months) mice were used as MetS models, and age- and sex-matched C57BL/6 wild-type mice on standard diet served as healthy controls (SD/WT). Both the SD/WT and HFD/APOB-100 mice were divided into sedentary and ET groups, the latter running on a treadmill (0.9 km/h) for 45 min 5 times per week for 7 months. At month 9, transthoracic echocardiography was performed to monitor cardiac function and morphology. At the termination of the experiment at month 10, blood was collected for serum low-density lipoprotein (LDL)- and high-density lipoprotein (HDL)-cholesterol measurements and homeostatic assessment model for insulin resistance (HOMA-IR) calculation. Cardiomyocyte hypertrophy and fibrosis were assessed by histology. Left ventricular expressions of selected genes associated with metabolism, inflammation, and stress response were investigated by qPCR. Results Both HFD/APOB-100 males and females developed obesity and hypercholesterolemia; however, only males showed insulin resistance. ET did not change these metabolic parameters. HFD/APOB-100 males showed echocardiographic signs of mild HF with dilated ventricles and thinner walls, whereas females presented the beginning of left ventricular hypertrophy. In response to ET, SD/WT males developed increased left ventricular volumes, whereas females responded with physiologic hypertrophy. Exercise-trained HFD/APOB-100 males presented worsening HF with reduced ejection fraction; however, ET did not change the ejection fraction and reversed the echocardiographic signs of left ventricular hypertrophy in HFD/APOB-100 females. The left ventricular expression of the leptin receptor was higher in females than males in the SD/WT groups. Left ventricular expression levels of stress response-related genes were higher in the exercise-trained HFD/APOB-100 males and exercise-trained SD/WT females than exercise-trained SD/WT males. Conclusions HFD/APOB-100 mice showed sex-specific cardiovascular responses to MetS and ET; however, left ventricular gene expressions were similar between the groups except for leptin receptor and several stress response-related genes.Peer reviewe
Oral Apixaban for the Treatment of Acute Venous Thromboembolism
BACKGROUND:
Apixaban, an oral factor Xa inhibitor administered in fixed doses, may simplify the treatment of venous thromboembolism.
METHODS:
In this randomized, double-blind study, we compared apixaban (at a dose of 10 mg twice daily for 7 days, followed by 5 mg twice daily for 6 months) with conventional therapy (subcutaneous enoxaparin, followed by warfarin) in 5395 patients with acute venous thromboembolism. The primary efficacy outcome was recurrent symptomatic venous thromboembolism or death related to venous thromboembolism. The principal safety outcomes were major bleeding alone and major bleeding plus clinically relevant nonmajor bleeding.
RESULTS:
The primary efficacy outcome occurred in 59 of 2609 patients (2.3%) in the apixaban group, as compared with 71 of 2635 (2.7%) in the conventional-therapy group (relative risk, 0.84; 95% confidence interval [CI], 0.60 to 1.18; difference in risk [apixaban minus conventional therapy], -0.4 percentage points; 95% CI, -1.3 to 0.4). Apixaban was noninferior to conventional therapy (P<0.001) for predefined upper limits of the 95% confidence intervals for both relative risk (<1.80) and difference in risk (<3.5 percentage points). Major bleeding occurred in 0.6% of patients who received apixaban and in 1.8% of those who received conventional therapy (relative risk, 0.31; 95% CI, 0.17 to 0.55; P<0.001 for superiority). The composite outcome of major bleeding and clinically relevant nonmajor bleeding occurred in 4.3% of the patients in the apixaban group, as compared with 9.7% of those in the conventional-therapy group (relative risk, 0.44; 95% CI, 0.36 to 0.55; P<0.001). Rates of other adverse events were similar in the two groups.
CONCLUSIONS:
A fixed-dose regimen of apixaban alone was noninferior to conventional therapy for the treatment of acute venous thromboembolism and was associated with significantly less bleeding (Funded by Pfizer and Bristol-Myers Squibb; ClinicalTrials.gov number, NCT00643201)