411 research outputs found

    Global environmental controls of wildfire burnt area, size and intensity.

    Get PDF
    Fire is an important influence on the global patterns of vegetation structure and composition. Wildfire is included as a distinct process in many dynamic global vegetation models but limited current understanding of fire regimes restricts these models' ability to reproduce more than the broadest geographic patterns. Here we present a statistical analysis of the global controls of remotely sensed burnt area (BA), fire size (FS), and a derived metric related to fire intensity (FI). Separate generalized linear models were fitted to observed monthly fractional BA from the Global Fire Emissions Database (GFEDv4), median FS from the Global Fire Atlas, and median fire radiative power from the MCD14ML dataset normalized by the square root of median FS. The three models were initially constructed from a common set of 16 predictors; only the strongest predictors for each model were retained in the final models. It is shown that BA is primarily driven by fuel availability and dryness; FS by conditions promoting fire spread; and FI by fractional tree cover and road density. Both BA and FS are constrained by landscape fragmentation, whereas FI is constrained by fuel moisture. Ignition sources (lightning and human population) were positively related to BA (after accounting for road density), but negatively to FI. These findings imply that the different controls on BA, FS and FI need to be considered in process-based models. They highlight the need to include measures of landscape fragmentation as well as fuel load and dryness, and to pay close attention to the controls of fire spread

    Accounting for atmospheric carbon dioxide variations in pollen-based reconstructions of past hydroclimates.

    Get PDF
    Changes in atmospheric carbon dioxide (CO2) concentration directly influence the ratio of stomatal water loss to carbon uptake. This ratio (e) is a fundamental quantity for terrestrial ecosystems, as it defines the water requirement for plant growth. Statistical and analogue-based methods used to reconstruct past hydroclimate variables from fossil pollen assemblages do not take account of the effect of CO2 variations on e. Here we present a general, globally applicable method to correct for this effect. The method involves solving an equation that relates e to a climatic moisture index (MI, the ratio of mean annual precipitation to mean annual potential evapotranspiration), mean growing-season temperature, and ambient CO2. The equation is based on the least-cost optimality hypothesis, which predicts how the ratio (χ) of leaf-internal to ambient CO2 varies with vapour pressure deficit (vpd), growing-season temperature and atmospheric pressure, combined with experimental evidence on the response of χ to the CO2 level at which plants have been grown. An empirical relationship based on global climate data is used to relate vpd to MI and growing-season temperature. The solution to the equation allows past MI to be estimated from pollen-reconstructed MI, given past CO2 and temperature. This MI value can be used to estimate mean annual precipitation, accounting for the effects of orbital variations, temperature and cloud cover (inferred from MI) on potential evapotranspiration. A pollen record from semi-arid Spain that spans the last glacial interval is used to illustrate the method. Low CO2 leads to estimated MI being larger than reconstructed MI during glacial times. The CO2 effect on inferred precipitation was partly offset by increased cloud cover; nonetheless, inferred precipitation was greater than present almost throughout the glacial period. This method allows a more robust reconstruction of past hydroclimatic variations than currently available tools

    Optimality-based modelling of wheat sowing dates globally

    Get PDF
    CONTEXT Sowing dates are currently an essential input for crop models. However, in the future, the optimal sowing time will be affected by climate changes and human adaptations to these changes. A better understanding of what determines the choice of wheat type and sowing dates is required to be able to predict future crop yields reliably. OBJECTIVE This study was conducted to understand how climate conditions affect the choice of wheat types and sowing dates globally. METHODS We develop a model integrating optimality concepts for simulating gross primary production (GPP) with climate constraints on wheat phenology to predict sowing dates. We assume that wheat could be sown at any time with suitable climate conditions and farmers would select a sowing date that maximises yields. The model is run starting on every possible climatically suitable day, determined by climate constraints associated with low temperature and intense precipitation. The optimal sowing date is the day which gives the highest yield in each location. We evaluate the simulated optimal sowing dates with data on observed sowing dates created by merging census-based datasets and local agronomic information, then predict their changes under future climate scenarios to gain insight into the impacts of climate change. RESULTS AND CONCLUSIONS Cold-season temperatures are the major determinant of sowing dates in the extra-tropics, whereas the seasonal cycle of monsoon rainfall is important in the tropics. Our model captures the timing of reported sowing dates, with differences of less than one month over much of the world; maximum errors of up to two months occur in tropical regions with large altitudinal gradients. Discrepancies between predictions and observations are larger in tropical regions than temperate and cold regions. Slight warming is shown to promote earlier sowing in wet areas but later in dry areas; larger warming leads to delayed sowing in most regions. These predictions arise due to the interactions of several influences on yield, including the effects of warming on growing-season length, the need for sufficient moisture during key phenological stages, and the temperature threshold for vernalization of winter wheat. SIGNIFICANCE The integration of optimality concepts for simulating GPP with climate constraints on phenology provides realistic predictions of wheat type and sowing dates. The model thus provides a basis for predicting how crop calendars might change under future climate change. It can also be used to investigate potential changes in management to mitigate the negative impacts of climate change

    Holocene vegetation dynamics of the Eastern Mediterranean region: old controversies addressed by a new analysis

    Get PDF
    Aim: We reconstruct vegetation changes since 12 ky in the Eastern Mediterranean to examine four features of the regional vegetation history that are controversial: the extent of non-analogue vegetation assemblages in the transition from the Late Glacial to the early Holocene, the synchroneity of postglacial forest expansion, the geographical extent of temperate deciduous forest during the mid-Holocene and the timing and trigger for the re-establishment of drought-tolerant vegetation during the late Holocene. Location: The Eastern Mediterranean–Black Sea Caspian Corridor. Taxon: Vascular plants. Methods: We reconstruct vegetation changes for 122 fossil pollen records using a method that accounts for within-biome variability in pollen taxon abundance to determine the biome with which a sample has greatest affinity. Per-biome affinity threshold values were used to identify samples that do not belong to any modern biome. We apply time series analysis and mapping to examine space and time changes. Results: Sites with non-analogue vegetation were most common between 11.5 and 9.5 ky and mostly in the Carpathians. The transition from open vegetation to forest occurred at 10.64 ± 0.65 ky across the whole region. Temperate deciduous forest was not more extensive at 6 ky; maximum expansion occurred between 5.5 and 5 ky. Expansion of forest occurred between c. 4 and 2.8 k, followed by an abrupt decrease and a subsequent recovery. This pattern is not consistent with a systematic decline of forest towards more drought-tolerant vegetation in the late Holocene but is consistent with centennial-scale speleothem patterns linked to variations in moisture availability. Main Conclusions: We show the occurrence of non-analogue vegetation types peaked during early Holocene, forest expansion was synchronous across the region and there was an expansion of moisture-demanding temperate trees around 5.5 to 5 ky. There is no signal of a continuous late Holocene aridification, but changes in forest cover appear to reflect climatic rather than anthropogenic influences

    Ecosystem photosynthesis in land-surface models: a first-principles approach

    Get PDF
    Vegetation regulates land-atmosphere water and energy exchanges and is an essential component of land-surface models (LSMs). However, LSMs have been handicapped by assumptions that equate acclimated photosynthetic responses to environment with fast responses observable in the laboratory. These time scales can be distinguished by including specific representations of acclimation, but at the cost of further increasing parameter requirements. Here we develop an alternative approach based on optimality principles that predict the acclimation of carboxylation and electron-transport capacities, and a variable controlling the response of leaf-level carbon dioxide drawdown to vapour pressure deficit (VPD), to variations in growth conditions on a weekly to monthly time scale. In the “P model”, an optimality-based light-use efficiency model for gross primary production (GPP) on this time scale, these acclimated responses are implicit. Here they are made explicit, allowing fast and slow response time-scales to be separated and GPP to be simulated at sub-daily timesteps. The resulting model mimics diurnal cycles of GPP recorded by eddy-covariance flux towers in a temperate grassland and boreal, temperate and tropical forests, with no parameter changes between biomes. Best performance is achieved when biochemical capacities are adjusted to match recent midday conditions. This model suggests a simple and parameter-sparse method to include both instantaneous and acclimated responses within an LSM framework, with many potential applications in weather, climate and carbon - cycle modelling

    Decomposition nitrogen is better retained than simulated deposition from mineral amendments in a temperate forest

    Get PDF
    Nitrogen (N) deposition (NDEP) drives forest carbon (C) sequestration but the size of this effect is still uncertain. In the field, an estimate of these effects can be obtained by applying mineral N fertilizers over the soil or forest canopy. A 15N label in the fertilizer can be then used to trace the movement of the added N into ecosystem pools and deduce a C effect. However, N recycling via litter decomposition provides most of the nutrition for trees, even under heavy NDEP inputs. If this recycled litter nitrogen is retained in ecosystem pools differently to added mineral N, then estimates of the effects of NDEP on the relative change in C (∆C/∆N) based on short-term isotope-labelled mineral fertilizer additions should be questioned. We used 15N labelled litter to track decomposed N in the soil system (litter, soils, microbes, and roots) over 18 months in a Sitka spruce plantation and directly compared the fate of this 15N to an equivalent amount in simulated NDEP treatments. By the end of the experiment, three times as much 15N was retained in the O and A soil layers when N was derived from litter decomposition than from mineral N additions (60% and 20%, respectively), primarily because of increased recovery in the O layer. Roots expressed slightly more 15N tracer from litter decomposition than from simulated mineral NDEP (7.5% and 4.5%) and compared to soil recovery, expressed proportionally more 15N in the A layer than the O layer, potentially indicating uptake of organic N from decomposition. These results suggest effects of NDEP on forest ∆C/∆N may not be apparent from mineral 15N tracer experiments alone. Given the importance of N recycling, an important but underestimated effect of NDEP is its influence on the rate of N release from litter

    A unifying conceptual model for the environmental responses of isoprene emissions from plants

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record.BACKGROUND AND AIMS: Isoprene is the most important volatile organic compound emitted by land plants in terms of abundance and environmental effects. Controls on isoprene emission rates include light, temperature, water supply and CO2 concentration. A need to quantify these controls has long been recognized. There are already models that give realistic results, but they are complex, highly empirical and require separate responses to different drivers. This study sets out to find a simpler, unifying principle. METHODS: A simple model is presented based on the idea of balancing demands for reducing power (derived from photosynthetic electron transport) in primary metabolism versus the secondary pathway that leads to the synthesis of isoprene. This model's ability to account for key features in a variety of experimental data sets is assessed. KEY RESULTS: The model simultaneously predicts the fundamental responses observed in short-term experiments, namely: (1) the decoupling between carbon assimilation and isoprene emission; (2) a continued increase in isoprene emission with photosynthetically active radiation (PAR) at high PAR, after carbon assimilation has saturated; (3) a maximum of isoprene emission at low internal CO2 concentration (ci) and an asymptotic decline thereafter with increasing ci; (4) maintenance of high isoprene emissions when carbon assimilation is restricted by drought; and (5) a temperature optimum higher than that of photosynthesis, but lower than that of isoprene synthase activity. CONCLUSIONS: A simple model was used to test the hypothesis that reducing power available to the synthesis pathway for isoprene varies according to the extent to which the needs of carbon assimilation are satisfied. Despite its simplicity the model explains much in terms of the observed response of isoprene to external drivers as well as the observed decoupling between carbon assimilation and isoprene emission. The concept has the potential to improve global-scale modelling of vegetation isoprene emission.We thank Karena McKinney for providing the original isoprene data for the Harvard forest site. We thank Russell Monson and Ru¨diger Grote for their helpful and constructive comments on the manuscript. C.M. and I.C.P. have received funding from the European Community’s Seventh Framework Programme (FP7 2007 – 2013) under grant agreement no. 238366

    Long-term water stress leads to acclimation of drought sensitivity of photosynthetic capacity in xeric but not riparian Eucalyptus species

    Get PDF
    Background and Aims Experimental drought is well documented to induce a decline in photosynthetic capacity. However, if given time to acclimate to low water availability, the photosynthetic responses of plants to low soil moisture content may differ from those found in short-term experiments. This study aims to test whether plants acclimate to long-term water stress by modifying the functional relationships between photosynthetic traits and water stress, and whether species of contrasting habitat differ in their degree of acclimation. Methods Three Eucalyptus taxa from xeric and riparian habitats were compared with regard to their gas exchange responses under short- and long-term drought. Photosynthetic parameters were measured after 2 and 4 months of watering treatments, namely field capacity or partial drought. At 4 months, all plants were watered to field capacity, then watering was stopped. Further measurements were made during the subsequent ‘drying-down’, continuing until stomata were closed. Key Results Two months of partial drought consistently reduced assimilation rate, stomatal sensitivity parameters (g1), apparent maximum Rubisco activity (V′cmaxVcmax′) and maximum electron transport rate (J′maxJmax′). Eucalyptus occidentalis from the xeric habitat showed the smallest decline in V′cmaxVcmax′ and J′maxJmax′; however, after 4 months, V′cmaxVcmax′ and J′maxJmax′ had recovered. Species differed in their degree of V′cmaxVcmax′ acclimation. Eucalyptus occidentalis showed significant acclimation of the pre-dawn leaf water potential at which the V′cmaxVcmax′ and ‘true’ Vcmax (accounting for mesophyll conductance) declined most steeply during drying-down. Conclusions The findings indicate carbon loss under prolonged drought could be over-estimated without accounting for acclimation. In particular, (1) species from contrasting habitats differed in the magnitude of V′cmax reduction in short-term drought; (2) long-term drought allowed the possibility of acclimation, such that V′cmax reduction was mitigated; (3) xeric species showed a greater degree of V′cmax acclimation; and (4) photosynthetic acclimation involves hydraulic adjustments to reduce water loss while maintaining photosynthesis
    corecore