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Abstract
Fire is an important influence on the global patterns of vegetation structure and composition.
Wildfire is included as a distinct process in many dynamic global vegetation models but limited
current understanding of fire regimes restricts these models’ ability to reproduce more than the
broadest geographic patterns. Here we present a statistical analysis of the global controls of
remotely sensed burnt area (BA), fire size (FS), and a derived metric related to fire intensity (FI).
Separate generalized linear models were fitted to observed monthly fractional BA from the Global
Fire Emissions Database (GFEDv4), median FS from the Global Fire Atlas, and median fire
radiative power from the MCD14ML dataset normalized by the square root of median FS. The
three models were initially constructed from a common set of 16 predictors; only the strongest
predictors for each model were retained in the final models. It is shown that BA is primarily driven
by fuel availability and dryness; FS by conditions promoting fire spread; and FI by fractional tree
cover and road density. Both BA and FS are constrained by landscape fragmentation, whereas FI is
constrained by fuel moisture. Ignition sources (lightning and human population) were positively
related to BA (after accounting for road density), but negatively to FI. These findings imply that the
different controls on BA, FS and FI need to be considered in process-based models. They highlight
the need to include measures of landscape fragmentation as well as fuel load and dryness, and to
pay close attention to the controls of fire spread.

1. Introduction

Fire is a necessary component of some ecosystems,
but a destructive influence in others (Keeley et al
2011, Archibald et al 2018, Harrison et al 2021).
In both cases, however, it represents a major influ-
ence on vegetation structure and composition. Recent
changes in wildfire regimes, especially the incidence
of exceptionally large fires in some regions, have
raised serious concerns about how they will develop
in response to projected future changes in climate and
land use (Bond et al 2005, Pausas and Keeley 2009,
Pausas and Ribeiro 2017).

Wildfire regimes are characterized as combina-
tions of specific fire properties (Krebs et al 2010,
Archibald et al 2013, 2018), of which the most cited
are total burnt area (BA) and the sizes and intensit-
ies of individual fires. Although all these properties
are understood to be jointly controlled by climatic,
vegetation and land-cover conditions (Archibald et al
2013, 2018, Kelley et al 2019, Rogers et al 2020), the
specifics remain unclear. This is manifested in the
poor performance of process-based models designed
to predict wildfire and its interactions with vegeta-
tion. Fire-enabled dynamic global vegetation mod-
els (DGVMs) have been used to simulate fire during
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the historical period (e.g. Teckentrup et al 2019),
and to predict how fire regimes might change in
future (Kloster et al 2012, Sheehan et al 2015, Wu
et al 2021). However, the Fire Model Intercompar-
ison Project (FireMIP: Hantson et al 2016, Rabin et al
2017) showed that process-based models performed
no better than empirical models in predicting BA
(Forkel et al 2019a, Hantson et al 2020). Furthermore,
no fire-enabled DGVM could predict global patterns
in fire size (FS) better than a null model that assumed
the same mean size everywhere (Hantson et al 2020).
This failure has been attributed to inadequate under-
standing, and therefore incomplete or incorrect rep-
resentation, of the key processes and their relation-
ship to environmental factors (Forkel et al 2019a,
Hantson et al 2020) in process-based models.

Several empirical studies have investigated the
relationships between environmental factors and
remotely sensed BA (e.g. Bistinas et al 2013, 2014,
Knorr et al 2014, 2016, Andela et al 2017, Forkel et al
2017, 2019b, Kuhn-Régnier et al 2021). Global FS
has been shown to vary along precipitation gradients,
with greater aridity linked to larger fires (Hantson
et al 2015). Human activity on the other hand
strongly restricts FS through landscape fragmenta-
tion, which limits fire spread (Hantson et al 2015,
Andela et al 2017, Laurent et al 2019). Intensity
depends on fire type, with crown fires generally more
intense than ground fires (Sugihara et al 2006, Keeley
2009, Archibald et al 2018). However, research into
the controls of the geographic patterns in FS and fire
intensity (FI) has been limited, mainly due to the
lack of observations (Bowman 2018). Novel products
from newly available satellite data sets (e.g. Laurent
et al 2018, Andela et al 2019, Artés et al 2019) provide
new opportunities to investigate these controls.

Four conditions must be met for a fire to
start. There must be sufficient fuel; it must be
dry, and therefore flammable; weather conditions
must be suitable; and there must be an ignition
source (Bradstock 2010). Once ignition occurs, how-
ever, other factors may influence whether the fire
spreads, how rapidly it spreads, and how intense it is
(Archibald et al 2013). In fire-enabled DGVMs, BA
is sometimes derived as the product of the number
of fires started and a mean FS. This concept intrins-
ically links ignition frequency to the total amount
of burning, an assumption that has been challenged
(Bistinas et al 2014, Harrison et al 2021). Globally,
FI has been observed to increase with fire occur-
rence up to a threshold, also known as the intermedi-
ate fire occurrence-intensity (IFOI) hypothesis (Pau-
sas and Ribeiro 2013, Luo et al 2017). In process-
based models FS is often dependent on FI, defined as
the amount of energy released by a wildfire, through
rate-of-spread equations (Yue et al 2014, Hantson
et al 2016). Indeed, as a key component of the
Rothermel equation (Rothermel 1972), greater FI is
assumed to increase the speed of fire spread, thus

producing larger fires. However, this relationship has
been shown to saturate inmuch of the world (Laurent
et al 2019).

In this paper, we explored the causal relationships
between environmental factors and geographic vari-
ation in fractional BA, FS and FI. These underlying
relationships may differ from the emergent relation-
ships with individual drivers. We develop generalized
linear models (GLMs) for each fire property, using a
common set of quantitative predictors representing
vegetation, land cover, climate, and ignition sources.
We explore the direction and power of the linear rela-
tionships fitted between each predictor and each fire
property, when all other variables are held constant,
to identify significant drivers and constraints for dif-
ferent aspects of the fire regime and assess their (dif-
fering) relative importance.

2. Data andmethods

2.1. Fire data
BA data were derived from monthly mean frac-
tional BA from the Global Fire Emissions Data-
base (GFEDv4; Randerson et al 2018). This provides
monthly BA at 0.25◦ × 0.25◦ resolution for the
period from June 1995 to December 2016. FS was
represented by median monthly FS from the Global
Fire Atlas (Andela et al 2019). This provides global
vector shapefiles gridded at 500 m with the timing
and location of each individual fire, along with its
key properties, from 2003 to 2016. The median was
used to account for the highly skewed distribution of
FS. FI was approximated by a metric based on the
median monthly fire radiative power (FRP) in the
MCD14ML dataset (Giglio et al 2006). This provides
geographic coordinates of active ∼1 km × 1 km
fire pixels detected by the Moderate Resolution Ima-
ging Spectroradiometer (MODIS)sensor onboard the
Terra and Aqua satellites, from 2000 to 2017. FRP
in megawatt (MW) is provided for each pixel. Only
type 0 pixels (presumed vegetation fires) and with
confidence >50% were retained. We divided the
monthlymedian values by the square root ofmonthly
median FS in the Global Fire Atlas. Although FRP
has been used directly to indicate FI (Wooster and
Zhang 2004, Wooster et al 2005), it is a meas-
ure of the instantaneous energy emission over the
whole pixel. Normalizing by the square root of
median FS provides a measure (in units of W m–1)
more closely related to the fireline intensity of any
given fire (see supplementary II available online at
stacks.iop.org/ERL/17/065004/mmedia).

2.2. Predictor variables
A set of predictors representing vegetation, land
cover, climate and ignition sources was identified
from previous research on the drivers of wildfire
regimes globally (Bistinas et al 2014, Forkel et al 2018,
2019b).
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2.2.1. Vegetation, land cover and landscape
fragmentation
Mean annual gross primary production (GPP)
obtained from monthly outputs of the P-model
(Stocker et al 2020), a first-principles model of GPP
that allows continuous acclimation of photosynthetic
parameters to environmental variations in space and
time (supplementary III), was used as an index of
vegetation productivity. Land cover categories were
used to represent vegetation types. Annual fractional
shrubland, grassland and tree cover were obtained by
converting the land cover types from the European
Space Agency (ESA) Climate Change Initiative (CCI)
Land Cover dataset, which provides annual maps
from 1992 to 2015 (Li et al 2018), to fractional cover
following Poulter et al (2015) using the conversion
table in Forkel et al (2017). Landscape fragmentation
was represented by cropland cover, two landscape
heterogeneity indexes and road density. This categor-
ization is by nomeans exhaustive, however all three of
these factors have been shown to influence fire activ-
ity and spread (Pfeiffer et al 2013, Andela et al 2017,
Povak et al 2018, Kelley et al 2019, Harrison et al 2021,
Pausas and Keeley 2021). Vector ruggedness measure
(VRM) and topographic position index (TPI) were
used to represent topographic controls (Sappington
et al 2007). VRM captures variability in slope and
aspect into a single measure, providing a measure for
terrain heterogeneity, whilst TPI provides informa-
tion on valleys (negative values) and ridges (positive
values). We obtained 50 km aggregated information
for these variables, derived from the digital eleva-
tion model products of global 250 m GMTED2010
and near-global 90 m SRTM4.1dev (Amatulli et al
2018). Although the data layers only cover 2010,
it was assumed that there would be no significant
changes in VRM or TPI from 2010 to 2015 at this res-
olution. Fractional annual cropland cover was taken
from version 3.2 of the HistorYDatabase of the global
Environment (HYDE 3.2: Klein Goldewijk et al 2017)
database, which provides annual data from 2000 to
2017 at 0.25◦ × 0.25◦ resolution. Road density was
obtained from the Global Roads Inventory Project
(GRIP) database (Meijer et al 2018), which provides
average road density from 1979 to 2015 (although
>50% of the data is from 2010 or later) at 0.5◦ × 0.5◦

resolution.

2.2.2. Climate
We calculated the total monthly number of dry
days (DDs), monthly mean daily vapour pres-
sure deficit (VPD), monthly mean daily diurnal
temperature range (DTR) and monthly mean
wind speed from the WFDE5 bias-adjusted ERA5
dataset (Cucchi et al 2020) (supplementary I).
This provides hourly data from 1979 to 2018 at
0.5◦ × 0.5◦ resolution.

2.2.3. Ignition sources
Annual values of population density, representing
the potential for human ignitions, were taken from
HYDE3.2. Mean monthly lightning ground-strike
density, representing potential natural ignitions, was
obtained from the worldwide lightning location
network (WWLLN) Global Lightning Climatology
(WGLC) dataset (Kaplan and Lau 2021). This con-
tains global monthly gridded data at 0.5◦ × 0.5◦ res-
olution from 2010 to 2020.

2.3. Data processing
A seasonal climatology over the common 6 years
period from 2010 to 2015 was constructed for all
variables withmonthly data, eliminating inter-annual
variability. This was the only common period for all
the variables but, given the strong spatial patterns
involved, we assume this is sufficiently long for our
purpose. Annual variables were averaged over the
6 years. For monthly data, a single global layer was
constructed from the seasonal climatology. For each
grid cell, the value of the month with (on average)
the maximum number of DD, the largest DTR, and
the highest VPD were selected. Wind speed value was
taken from the hottest month of the year (determ-
ined from the WFDE5 2 m air temperature (Cucchi
et al 2020)). For lightning, the mean value over the
seasonal climatology was selected.

Additionally, we included two seasonality predict-
ors to account for periods of high vs low productivity
(seasonality of GPP) and wet vs dry seasons (season-
ality of DD). These seasonality predictors were con-
structed from the GPP and DD climatology, respect-
ively. To capture the seasonality of GPP, we divided
the range of monthly values from the seasonal cli-
matology by the mean value of all 12 months. The
same was done to capture the seasonality of DD. For
road density and the VRM, no additional processing
was performed. This provided a set of 16 predict-
ors (table 1). For the fire variables, the mean value
over the seasonal climatology was selected. All vari-
ables were re-gridded to a 0.5◦ × 0.5◦ resolution grid
to order to be compatible with the lowest resolution
datasets and all analysis were conducted at this scale.

Predictor variables were transformed appropri-
ately (table 1) to reduce differences in scale and
improve interpretability (Schielzeth 2010). GPP was
the only predictor with zero values. We applied log-
arithmic transformation to GPP, ignoring zero val-
ues in the model. Since we assume no fire occurs
whereGPPwas zero, themissing values were re-coded
as zero afterwards. Square root transformation was
applied to predictors representing densities, for which
zero values were assumed to bemeaningful. To reduce
distortion introduced by a few (extremely rare) very
large values, FS and intensity were transformed
to z-scores:

3



Environ. Res. Lett. 17 (2022) 065004 O Haas et al

Table 1. Summary of predictor and fire response variables.

Predictors Data source Abbreviation Transformation

Vegetation, land cover and landscape fragmentation

Annual gross primary
production (g C m−2 a−1)

P-model (Stocker et al 2020) GPP Logarithmic

Gross primary production
seasonality (unitless)

P-model (Stocker et al 2020) GPP_seasonality Logarithmic

Fractional shrubland cover ESA CCI Landcover Shrub None
Fractional grassland cover ESA CCI Landcover Grass None
Fractional tree cover ESA CCI Landcover Tree None
Road density (km–2) GRIP (Meijer et al 2018) Roads Square root
Fractional cropland cover HYDE 3.2 (Klein Goldewijk

et al 2017)
Crop None

Vector ruggedness measure (Amatulli et al 2018) VRM None
Topographic position index (Amatulli et al 2018) TPI None

Climate

Maximum monthly number of
dry days

WFDE5 (Cucchi et al 2020) DD Logarithmic

Seasonality of monthly number
of dry days (unitless)

WFDE5 (Cucchi et al 2020) DD_seasonality Logarithmic

Maximum mean monthly
vapour pressure deficit (Pa)

WFDE5 (Cucchi et al 2020) VPD Logarithmic

Maximum mean monthly
diurnal temperature range (K)

WFDE5 (Cucchi et al 2020) DTR Logarithmic

Mean wind speed of the hottest
month (m s–1)

WFDE5 (Cucchi et al 2020) Wind Logarithmic

Ignition sources

Population density (km–2) HYDE 3.2 (Klein Goldewijk
et al 2017)

Popd Square-root

Mean monthly lightning
ground-strikes (km–2)

WGLCWWLLN (Kaplan et al
2021)

Light Square-root

Fire variables

Monthly mean burnt area
(fraction)

GFEDv4 (Randerson et al
2018)

BA None (logit link function)

Monthly median fire size (km2) Global Fire Atlas (Andela et al
2019)

FS Min–max normalized (log link
function)

Monthly median fire intensity
(W km–1)

MCD14ML (Giglio et al
2006)

FI Median FRP divided by square
root of median FS, min–max
normalized (log link function).

zi = (xi −µi)/σi (1)

where µi is the mean and σi is the standard devi-
ation of the variable xi, and values of xi yielding
z-scores >3 or <−3 were excluded (Shiffler 1988).
The remaining values were scaled using the min–max
transformation:

xni = [xi −min(xi)]/[max(xi)−min(xi) . (2)

To confine the range of the transformed (xni) values to
the interval (0, 1). This scaling helps interpretability
but does not interfere with the statistical distribution
of values (Juszczak et al 2002).

2.4. Statistical modelling
GLMs have previously been used to model BA
(Lehsten et al 2010, Bistinas et al 2014) because

they provide highly interpretable results (Nelder and
Wedderburn 1972, McCullagh and Nelder 1989).
GLMs are useful because they (a) handle response
variables with highly non-Gaussian error distri-
butions without the problems introduced e.g. by
log-transformation of response variables, (b) are
embedded in a well-established (multiple regression)
framework, which allows quantification of the inde-
pendent effects of multiple predictors even if they are
partially correlated with one another, and (c) gener-
ate partial residual plots showing the effect of each
predictor while the others are held constant (Larsen
andMcCleary 1972). The relative importance of each
predictor was assessed using absolute t-values (the fit-
ted regression coefficient of each predictor divided by
its standard error) calculated with the package caret
in R. These t-values are unitless and scale-invariant,
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and in addition to providing a simple measure of
the importance of each predictor (Grömping 2015),
are directly related to the coefficient of determination
(R2): the squared t-value of each predictor xi repres-
ents the reduction in R2 that occurs when that pre-
dictor is removed from the model (Darlington 1968,
Bring 1996). Thus, the larger the t-value of a pre-
dictor, the more variance it explains. Variance infla-
tion factors (VIFs) were examined to evaluate multi-
collinearity among predictors. A VIF of 1 indicates no
collinearity; we eliminated predictors with VIF values
>5 (O’brien 2007). We used normalized mean error
(NME) to evaluate the performance of the models,
following Kelley et al (2013). NME is a standard met-
ric to assess global fire model performances, allow-
ing direct comparisonwith these othermodels (Kelley
et al 2019, Hantson et al 2020). NME is defined as:

NME=

∑
Ai |obsi − simi|∑
Ai

∣∣obsi − obs
∣∣

where the difference between observations (obs)
and simulation (sim) are summed over all cells (i)
weighted by cell area (Ai) and normalized by the aver-
age distance from themean of the observations (obs).
An NME score has no upper limit, but smaller values
signify better performance with a zero-value mean-
ing perfect fit between observed and simulated values.
All analysis were conducted in R using the stats, car,
benchmarkMetrics and visreg packages.

Fractional BA was equated with the probability
of burning, ranging between 0 and 1. We assumed
this probability to follow a quasi-binomial distribu-
tion, and applied the logit link function. The dis-
tribution of FS and intensity is hypothesized to fol-
low a power law (Kumar et al 2011, Hantson et al
2016). We assumed a quasi-Poisson distribution for
both variables (due to their large overdispersion,
with many very small values) and applied the log
link function.

All three models were initially constructed using
all 16 predictors (see supplementary IV). Population
density has been hypothesized to indicate landscape
fragmentation (Bistinas et al 2014, Knorr et al 2014)
but is highly correlated with road density (r = 0.31).
Therefore, we made two additional model runs, with
all predictor variables excluding either population
density or road density, to assess how much of the
variance was explained by these predictors when the
other is not present (see supplementary V). VPD,
the absolute difference in water vapour content of
the air and the water holding capacity of the atmo-
sphere, influences long-term plant growth and pho-
tosynthesis (ParkWilliams et al 2013, Abatzoglou et al
2016, Grossiord et al 2020) butGPP seasonality is cor-
related with VPD (r = 0.71). We therefore made two
separate model runs, using all predictors but exclud-
ing either GPP seasonality or VPD (see supplement-
ary VI). From these runs, we present the best model

for each fire property. Only predictors with p < 10−5

were retained, resulting in three final models that
includes only predictors with substantial explanatory
power.

3. Results

All 16 predictors showed significant relationships
with BA (table S2). GPP (t = 63.00), DD (t = 70.23)
and DD seasonality (t = 59.26), grassland cover
(t = 52.91), and VPD (t = 39.11) showed strong pos-
itive relationshipswith BA (figure 1). Shrubland cover
(t = 26.35), DTR (t = 19.82) and TPI (t = 18.86)
also showed positive relationships with BA. Light-
ning (t = 12.35) and population density (t = 10.64)
showed positive relationships with BA (the relation-
ship with population density however became neg-
ative when road density was excluded). Road dens-
ity (t = −37.32), VRM (t = −21.39), tree cover
(t = −18.74), cropland (t = −10.05) and wind
(t = −6.80) and showed negative relationships with
BA (figure 1).

Eleven of the original 16 predictors were retained
in the final FS model (table 2). GPP, grassland cover,
TPI and population density were statistically insig-
nificant, and seasonality of DD did not meet the t-
value threshold (table S2). DTR (t = 14.46), and
wind speed (t = 14.41), followed in importance by
DD (t = 11.16), shrubland cover (t = 7.61), light-
ning (t = 5.50) GPP seasonality (t = 5.18) and
VPD (t = 5.12) all showed positive relations with FS
(figure 1). Cropland cover (t = −22.42), road dens-
ity (t = −16.47), VRM (t = 5.78) and tree cover
(t = −5.25) showed negative relationships with FS
(figure 1).

Only nine of the original 16 predictors were
retained in the final model for FI (table 2). DTR,
wind speed cropland cover and TPI were statistically
insignificant and VRM and seasonality of GPP did
not meet the t-value threshold (table S2). Tree cover
(t = 9.08) and road density (t = 8.58) showed posit-
ive relationships with FI, whereas VPD (t =−47.55),
GPP (t =−18.47), DD (t =−16.18) and DD season-
ality (t = −14.27) population density (t = −13.49)
and lightning (t = −7.15) all showed negative rela-
tionships (figure 1).

Excluding population density did not change the
significance or sign of any relationship with BA, FS
or FI. Excluding road density led to a weak (p= 0.05)
negative relationship between population density and
BA, a highly significant negative relationship with FS,
but no change for FI (table S3). Excluding VPD lead
the seasonality of GPP to become insignificant with
BA and to exhibit a weak (p= 0.06) positive relation-
ship with FS. For FI, the exclusion of VPD lead to a
large increase in the strength of the seasonality of GPP
(from t = 3.32 to t = 27.67) (table S4).

The strongest relationships differed between
models. BA was driven above all by variables related
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Table 2. Summary statistics with regression coefficients, t-values, and VIFs for each of the final models. Predictors included were all
significant at t > 4.5 (p < 10−5).

Predictors Burnt area (BA) Fire size (FS) Fire intensity (FI)

Coefficient t-value VIF Coefficient t-value VIF Coefficient t-value VIF

(Intercept) −48.25 −103.6 — −13.09 −25.75 — 6.43 44.85 —
GPP (g C m−2 a−1) 1.76 63.00 4.13 — — — −0.21 −18.47 3.04
Seasonality of GPP 0.59 14.78 2.43 0.30 5.18 3.29 — — —
Fractional tree cover −0.93 −18.74 2.92 −0.42 −5.25 2.19 0.19 9.08 2.20
Fractional shrubland
cover

1.39 26.35 1.70 0.64 7.61 1.29 — — —

Fractional grassland cover 2.93 52.91 1.56 — — — −0.35 −11.91 1.18
Road density (km–2) −0.05 −37.32 1.44 −0.04 −16.47 1.40 0.00 8.58 1.80
Fractional cropland cover −0.79 −10.05 2.15 −3.51 −22.42 1.42 — — —
VRM −188.70 −21.39 1.55 −62.28 −5.78 1.50 — — —
TPI 0.43 18.86 1.33 — — — — — —
Maximummonthly
number of DDs

4.54 70.23 2.89 1.14 11.16 2.30 −0.31 −14.27 1.95

Seasonality of monthly
number of DDs

1.33 59.26 2.57 — — — −0.15 −16.18 1.97

Maximum mean monthly
VPD (Pa)

1.35 39.11 1.78 0.31 5.12 3.72 −0.66 −47.55 2.03

Maximum mean monthly
DTR (K)

0.87 19.82 1.78 1.24 14.46 1.91 — — —

Mean wind speed of the
hottest month (m s–1)

−0.20 −6.80 1.93 0.80 14.41 2.20 — — —

Mean monthly lightning
ground-strikes (km–2)

0.94 12.35 1.66 0.83 5.50 2.06 −0.30 −7.15 2.11

Population density (km–2) 0.02 10.64 1.71 — — — −0.01 −13.49 1.56
R2 (McFadden 1974) 0.69 0.29 0.27

to fuel availability (GPP and grass cover: positive
relationships) and dryness (DD and the seasonality of
DD: positive relationships) (figure 2). Cropland cover
and road density (negative relationships) were the
two strongest drivers of FS (positive relationships),
followed closely by DTR and wind speed (positive
relationships) (figure 2). VPD and GPP showed the
strongest relationships with FI (figure 2), both being
negative relationships.

The predictive power of the BAmodel (R2 = 0.69)
was substantially greater than that for FS (R2 = 0.29)
or FI (R2 = 0.27), suggesting these last two properties
are influenced by factors not included in the analysis.
Despite modest R2 values, however, all three models
capture the broad geographic patterns of the obser-
vations (figure 3). We obtained NME scores of 0.51,
0.86 and 0.86 for the BA, FS and FI models, respect-
ively. Our BA and FSmodels outperformed allmodels
included in the Fire Intercomparison Project, which
hadNME scores ranging from 0.60 to 1.10 for BA and
0.96–0.98 for FS (Hantson et al 2020). Although no
direct comparison with the FireMIP models is pos-
sible for FI, this model performed as well as the FS
model. All three models perform better than a null
mean model, which assumes the observational mean
globally and produces an NME score of 1. All three
GLMs tend to compress the reconstructed range of
values, leading to apparent over- (under-) predic-
tion at the low (high) extremes. However, the partial

residual plots (figure 1) do not show systematic biases
suggesting that the apparent compressionmay simply
reflect the highly stochastic nature of wildfire. The fit-
tedmodels represent an estimate of themost probable
outcome, whereas the observations are what actu-
ally happened—including some exceptionally large
and/or intense fires, but alsomany grid cells where no
fires were detected. The observations also have a sys-
tematic low-end bias, as fires smaller than a certain
size are not detected by MODIS (Rotera et al 2019,
Ramo et al 2021).

4. Discussion

We have shown that the environmental controls on
geographic patterns of BA, FS and FI are different.
Here we discuss these differences, how they might be
interpreted, and their implications for improving pre-
dictive models.

BAwas shown to be primarily driven by fuel avail-
ability (represented by GPP and grass cover) and dry-
ness (particularly DD, but also VPD and DTR) and
constrained by road density. These results are con-
sistent with previous research (Bistinas et al 2014,
Andela et al 2017, Forkel et al 2019a, 2019b, Kelley
et al 2019, Kuhn-Régnier et al 2021) and with the
IFOI hypothesis that the main drivers of fire activ-
ity are fuel availability and fire weather, varying in
importance globally along the productivity gradient
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Figure 1. Partial residual plots for BA, FS and FI as functions of (GPP) gross primary production, (GPP (s)) seasonality of GPP,
(shrub) shrubland cover, (grass) grassland cover, (tree) tree cover, (roads) road density, (crop) cropland, (VRM) vector
ruggedness measure, (TPI) topographic position index, (DD) dry days, (DD (s)) dry days seasonality, (VPD) vapour pressure
deficit, (DTR) diurnal temperature range, (wind) wind speed, (popd) population density and (light) lightning ground-strikes.
Green represents vegetation and land cover predictors; purple represents fragmentation predictors; red represents climate
predictors; blue represents ignition source predictors.

Figure 2. T-values for each predictor included in the final BA (A), FS (B) and FI models (C) showing relative importance of each
predictor. The larger the absolute t-values of a predictor within a model, the more variance that individual predictor explains in
that model. Green represents vegetation and land cover predictors; purple represents fragmentation predictors; red represents
climate predictors; blue represents ignition source predictors.
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Figure 3. Observed (left) and predicted (right) annual BA (fraction), monthly median FS (km2) and monthly median FI
(W km−1).

(Pausas and Ribeiro 2013). In addition, both light-
ning and population density positively influence BA.
The apparent fire-suppressing effect of population
density (noted by Bistinas et al 2014, Knorr et al
2014, among others) is represented in our analysis by
road density. Roads provide barriers to fire spread,
hence the negative relationship of BA to road density.
When this effect is accounted for, population density
relates positively to BA. The positive relationship with
TPI suggests that fractional BA increases as we move
from valleys to ridges, and that ridges do not con-
strain BA. This result is in line with previous research
suggesting that ridges do not necessary provide fire
breaks, and that valleys, characterized by higher soil
moisture, lower insolation, and higher terrain shad-
ing exhibit stronger control on fire spread (Povak
et al 2018). Terrain heterogeneity (VRM) however,
strongly constrains BA. Although wind speed pro-
motes fire spread, wind speed was negatively related
to BA, in line with previous research showing the lim-
ited effect of wind speeds on BA at a coarse global
scale (Lasslop et al 2015).

Factors promoting fire spread, namelywind speed
and dryness (particularly DTR, but also VPD) were
shown to be the primary drivers of FS while cropland
cover, road density, and terrain heterogeneity (VRM),
all agents of landscape fragmentation, strongly con-
strain FS. The effect of wind speed was significant
for FS. TPI was not statistically significant, suggest-
ing that the presence of steep slopes and ridges do not
necessarily control fire spread (Povak et al 2018). This

is consistent with research suggesting fuel continu-
ity is important for FS (Viedma et al 2009, Hantson
et al 2015, Laurent et al 2019). In contrast with BA, FS
showed no significant relationship to GPP or grass-
land cover—indicating fuel availability is less import-
ant for FS than BA, and that large fires tend not to
occur in highly productive environments.

The FI metric was shown to be positively influ-
enced by tree cover and road density and constrained
by dryness (particularly VPD, and also DD). Lack of
precipitation has been shown to limit fuel build-up
(Keeley and Syphard 2017, Kuhn-Régnier et al 2021,
Pausas and Keeley 2021) and high atmospheric dry-
ness (VPD) limits plant growth (Fu et al 2022). The
negative relationship with dryness is therefore not
surprising since we expect fuel load to be an import-
ant driver of FI. Although GPP is negatively related
to the FI measure, when VPD was excluded, the sea-
sonality of GPP became the strongest driver of the FI
model, an effect that did not translate into the other
two models. This would suggest that sufficient atmo-
spheric moisture along with seasonal changes in pro-
ductivity, provide the dense fuel loads necessary for
intense fires. These dense fuel loads aremostly restric-
ted to areas with high tree cover, explaining the neg-
ative relationship with grassland and shrubland cover
(Archibald et al 2013, Luo et al 2017, Archibald et al
2018). The overall negative relationship with GPP
could therefore be explained by intense fires mainly
occurring in regions with a seasonal variation in pro-
ductivity, more characteristic of the high latitude
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forests than the more productive, tropical ones. A
plausible reason for the positive relationship between
FI and road density is the correlation between intense
deforestation fires and the access roads required in
remote forest areas. The observed negative relation-
ship between lightning and FI is expected since fre-
quent fire limits fuel build-up (Pausas and Ribeiro
2013, Luo et al 2017). Similarly, the negative rela-
tionship between population density and FI can be
interpreted as a trade-off between the frequency and
intensity of fires, probably compounded by active fire
suppression in densely populated regions.

The FI metric shared few strong predictors with
either of the other models. It was not limited by land-
scape fragmentation;wind speed andDTRwere insig-
nificant, and it showed an opposite relationship with
dryness to the other models. This implies that the
widely assumed positive relationship between FI and
FS does not hold generally. Saturation of this rela-
tionship in fire-prone ecosystems (Laurent et al 2019)
has been attributed to feedback between BA and fuel
connectivity, with landscape fragmentation increas-
ing through the fire season due to previous burns,
thus limiting FS. Our results are consistent with this
but suggest additional factors may influence the rela-
tionship between FS and intensity. The limiting effect
of dryness on FI suggests fuel loads are important,
consistent with previous research (Forkel et al 2019a,
Kuhn-Régnier et al 2021). Antecedent conditions and
current dryness may promote fine and flammable
fuels that favour large but cooler fires, while limiting
build-up of the larger, more dense fuels required for
intense fires (Hantson et al 2015, Kuhn-Régnier et al
2021).

Some of the original 16 predictors proved unim-
portant for the FS and FI models. Although all pre-
dictors included in the final models were highly signi-
ficant (p< 10−5) the partial residual plots suggest that
there may be cases where the relationship is not linear
(e.g. GPP), although in no case did the inclusion of a
non-linear (polynomial) term in the models improve
predictability. Together with the relatively low level
of predictability of these two models, this suggests
that other factors need to be investigated. There is
growing evidence of fire regimes differing in similar
biomes, as well as different biomes showing similar
fire regimes—phenomena that cannot be explained
without consideration of fire-adaptive plant traits
(Hollingsworth et al 2013, Pausas 2015, Pausas et al
2016, Pausas and Ribeiro 2017, Archibald et al 2018).
The boreal forests in North America and Eurasia are a
case in point, where crown and surface fires respect-
ively are dominant (Wooster and Zhang 2004, Wirth
2005, Sitnov and Mokhov 2018). The distribution of
fire-adaptive plant traits may be crucial to under-
stand FS and intensity (Harrison et al 2021). Unfor-
tunately, although there is information about fire-
adaptive traits for some regions, including southern
Europe and eastern Australia (Tavşanoğlu and Pausas

2018, Falster et al 2021), such information is limited
elsewhere; this is a key data gap.

Our results have implications for fire modelling.
Process-based models generally rely on the product
of fire counts and FS to simulate BA. Our results
suggest that the controls on BA, FS and FI should
be modelled separately. Our results also add to the
growing literature suggesting the use of population
density to determine number of ignitions should be
reviewed (Bistinas et al 2014, Knorr et al 2014, 2016,
Andela et al 2017). Our results suggest it would be
better to include landscape fragmentation explicitly
as a control on fire spread. Population density appar-
ently has a globally negative effect on BA unless an
alternative measure of landscape fragmentation, such
as road density, is included (table S3). Thus, popu-
lation density as used in current models is a surrog-
ate for human fire suppression and landscape frag-
mentation (Bistinas et al 2013, Knorr et al 2014,
2016, Harrison et al 2021); any positive impact of
population on ignitions will only be captured when
fragmentation is explicitly considered. Some process-
based models account for the emergent relationship
between population and fire properties (Harrison
et al 2021), whereby increasing population density
leads to increased ignitions up to a threshold and fur-
ther increases lead to suppression (Rabin et al 2017).
We have shown that some elements of landscape
fragmentation exhibit strong spatial control on fire
spread that can be modelled at a global scale. In addi-
tion to factors of landscape fragmentation considered
here, additional features such as deforestation, non-
flammable land cover and previous burns can all frag-
ment the landscape and thus effect fuel continuity
(Laurent et al 2019, Harrison et al 2021, Pausas and
Keeley 2021). There is a pressing need to investigate
how each of these features of landscape fragmenta-
tion influence different aspects of the fire regime and
integrate them to global wildfire modelling explicitly.
Although lightning showed a positive relationship
with BA and FS, the relationship was not particularly
strong. Lightning also constrained FI, possibly via a
trade-off between intensity and frequency. Process-
based models may therefore have overestimated the
importance of ignition sources generally. Indeed, fire-
enabledDGVMs struggle to simulate fire starts accur-
ately (Forkel et al 2019a).

We have represented FS using data from the
Global Fire Atlas and intensity with FRP values from
MCD14ML dataset. The Global Fire Atlas relies on
the MODIS sensor, so the minimum size of a recor-
ded fire is one MODIS pixel (0.21 km2) and thus our
data does not include fires smaller than this. How-
ever, the environmental drivers of small fires are not
expected to differ from those of larger fires. Although
FRP has been used as a measure of FI, it represents
the radiative energy emitted and does not account
for convection and conduction. FI in the Rothermel
equation represents the intensity of the flaming front
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of an individual fire, whereas retrieved FRP values
from MCD14ML integrate radiative energy over a
1 km × 1 km pixel. The normalization introduced
here provides a partial solution to this problem and
accurately highlights the regions of high FI. However,
work is required to derive fireline intensity more reli-
ably from remotely sensed products.

This analysis did not account for any inter-annual
variability, such as changes in the length of the fire
season or a departure the established fire regime
within a given year. Though these factors have been
shown to influence the different aspects of the fire
regime (Pausas 2004, Pausas and Keeley 2021), we
were interested in the underlying climatic, land cover
and ignition spatial controls when the effect inter-
annual variability was removed. Understanding these
controls for different aspects of the fire regime is a first
and crucial step to predicting how theywill respond to
different conditions between years and in the future.
The timeframe of this analysis was relatively short,
though similar to timeframes used in previous empir-
ical analyses due to similar data availability issues.
The strong spatial patterns displayed both by the fire
variables and the predictors meant that key relation-
ships could nonetheless be established. Each model
reproduces the spatial patterns of regions of high BA,
large FS and high FI, allowing useful conclusions to
be drawn.

Data availability statements

All predictor variables are available using the refer-
ences given in tables 1 and S1. The GFEDv4 data
are available at https://daac.ornl.gov/VEGETATION/
guides/fire_emissions_v4.html. The Global Fire Atlas
data is available at www.globalfiredata.org/firea
tlas.html. The MCD14ML dataset is available
at https://earthdata.nasa.gov/earth-observation-da
ta/near-real-time/firms/mcd14ml.

The data that support the findings of this study
are openly available at the following URL/DOI:
https://figshare.com/s/54af266b692e1d3b2316.
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