24 research outputs found

    GrailQuest & HERMES: Hunting for Gravitational Wave Electromagnetic Counterparts and Probing Space-Time Quantum Foam

    Get PDF
    Within Quantum Gravity theories, different models for space-time quantisation predict an energy dependent speed for photons. Although the predicted discrepancies are minuscule, GRB, occurring at cosmological distances, could be used to detect this signature of space-time granularity with a new concept of modular observatory of huge overall collecting area consisting in a fleet of small satellites in low orbits, with sub-microsecond time resolution and wide energy band (keV-MeV). The enormous number of collected photons will allow to effectively search these energy dependent delays. Moreover, GrailQuest will allow to perform temporal triangulation of high signal-to-noise impulsive events with arc-second positional accuracies: an extraordinary sensitive X-ray/Gamma all-sky monitor crucial for hunting the elusive electromagnetic counterparts of GW. A pathfinder of GrailQuest is already under development through the HERMES project: a fleet of six 3U cube-sats to be launched by 2021/22

    Cosmic ray oriented performance studies for the JEM-EUSO first level trigger

    Get PDF
    JEM-EUSO is a space mission designed to investigate Ultra-High Energy Cosmic Rays and Neutrinos (E > 5 ⋅ 1019 eV) from the International Space Station (ISS). Looking down from above its wide angle telescope is able to observe their air showers and collect such data from a very wide area. Highly specific trigger algorithms are needed to drastically reduce the data load in the presence of both atmospheric and human activity related background light, yet retain the rare cosmic ray events recorded in the telescope. We report the performance in offline testing of the first level trigger algorithm on data from JEM-EUSO prototypes and laboratory measurements observing different light sources: data taken during a high altitude balloon flight over Canada, laser pulses observed from the ground traversing the real atmosphere, and model landscapes reproducing realistic aspect ratios and light conditions as would be seen from the ISS itself. The first level trigger logic successfully kept the trigger rate within the permissible bounds when challenged with artificially produced as well as naturally encountered night sky background fluctuations and while retaining events with general air-shower characteristics

    HERMES: An ultra-wide band X and gamma-ray transient monitor on board a nano-satellite constellation

    Get PDF
    The High Energy Modular Ensemble of Satellites (HERMES) project is aimed to realize a modular X/gamma-ray monitor for transient events, to be placed on-board of a nano-satellite bus (e.g. CubeSat). This expandable platform will achieve a significant impact on Gamma Ray Burst (GRB) science and on the detection of Gravitational Wave (GW) electromagnetic counterparts: the recent LIGO/VIRGO discoveries demonstrated that the high-energy transient sky is still a field of extreme interest. The very complex temporal variability of GRBs (experimentally verified up to the millisecond scale) combined with the spatial and temporal coincidence between GWs and their electromagnetic counterparts suggest that upcoming instruments require sub-microsecond time resolution combined with a transient localization accuracy lower than a degree. The current phase of the ongoing HERMES project is focused on the realization of a technological pathfinder with a small network (3 units) of nano-satellites to be launched in mid 2020. We will show the potential and prospects for short and medium-term development of the project, demonstrating the disrupting possibilities for scientific investigations provided by the innovative concept of a new \u201cmodular astronomy\u201d with nano-satellites (e.g. low developing costs, very short realization time). Finally, we will illustrate the characteristics of the HERMES Technological Pathfinder project, demonstrating how the scientific goals discussed are actually already reachable with the first nano-satellites of this constellation. The detector architecture will be described in detail, showing that the new generation of scintillators (e.g. GAGG:Ce) coupled with very performing Silicon Drift Detectors (SDD) and low noise Front-End-Electronics (FEE) are able to extend down to few keV the sensitivity band of the detector. The technical solutions for FEE, Back-End-Electronics (BEE) and Data Handling will be also described

    Design, integration, and test of the scientific payloads on-board the HERMES constellation and the SpIRIT mission

    No full text
    HERMES (high energy rapid modular ensemble of satellites) is a space-borne mission based on a constellation of nano-satellites flying in a low-Earth orbit (LEO). The six 3U CubeSat buses host new miniaturized instruments hosting a hybrid silicon drift detector/GAGG:Ce scintillator photodetector system sensitive to x-rays and gamma-rays. HERMES will probe the temporal emission of bright high-energy transients such as gamma-ray bursts (GRBs), ensuring a fast transient localization (with arcmin-level accuracy) in a field of view of several steradians exploiting the triangulation technique. With a foreseen launch date in late 2023, HERMES transient monitoring represents a keystone capability to complement the next generation of gravitational wave experiments. Moreover, the HERMES constellation will operate in conjunction with the space industry responsive intelligent thermal (SpIRIT) 6U CubeSat, to be launched in early 2023. SpIRIT is an Australian-Italian mission for high-energy astrophysics that will carry in a sun-synchronous orbit (SSO) an actively cooled HERMES detector system payload. On behalf of the HERMES collaboration, in this paper we will illustrate the HERMES and SpIRIT payload design, integration and tests, highlighting the technical solutions adopted to allow a wide-energy-band and sensitive x-ray and gamma-ray detector to be accommodated in a 1U CubeSat volume

    GrailQuest & HERMES: Hunting for gravitational wave electromagnetic counterparts and probing space-time quantum foam

    No full text
    GrailQuest (Gamma-ray Astronomy International Laboratory for Quantum Exploration of Space-Time) is an ambitious astrophysical mission concept that uses a fleet of small satellites whose main objective is to search for a dispersion law for light propagation in vacuo. Within Quantum Gravity theories, different models for space-time quantization predict relative discrepancies of the speed of photons w.r.t. the speed of light that depend on the ratio of the photon energy to the Planck energy. This ratio is as small as 10-23 for photons in the γ- ray band (100 keV). Therefore, to detect this effect, light must propagate over enormous distances and the experiment must have extraordinary sensitivity. Gamma-Ray Bursts, occurring at cosmological distances, could be used to detect this tiny signature of space-time granularity. This can be obtained by coherently combine a huge number of small instruments distributed in space to act as a single detector of unprecedented effective area. This is the first example of high-energy distributed astronomy: a new concept of modular observatory of huge overall collecting area consisting in a fleet of small satellites in low orbits, with sub-microsecond time resolution and wide energy band (keV-MeV). The enormous number of collected photons will allow to effectively search these energy dependent delays. Moreover, GrailQuest will allow to perform temporal triangulation of impulsive events with arc-second positional accuracies: an extraordinary sensitive X-ray/Gamma all-sky monitor crucial for hunting the elusive electromagnetic counterparts of Gravitational Waves, that will play a paramount role in the future of Multi-messenger Astronomy. A pathfinder of GrailQuest is already under development through the HERMES (High Energy Rapid Modular Ensemble of Satellites) project: a fleet of six 3U cube-sats to be launched by the end of 2022

    The scientific payload on-board the HERMES-TP and HERMES-SP CubeSat missions

    No full text
    HERMES (High Energy Rapid Modular Ensemble of Satellites) Technological and Scientific pathfinder is a space borne mission based on a LEO constellation of nano-satellites. The 3U CubeSat buses host new miniaturized detectors to probe the temporal emission of bright high-energy transients such as Gamma-Ray Bursts (GRBs). Fast transient localization, in a field of view of several steradians and with arcmin-level accuracy, is gained by comparing time delays among the same event detection epochs occurred on at least 3 nano-satellites. With a launch date in 2022, HERMES transient monitoring represents a keystone capability to complement the next generation of gravitational wave experiments. In this paper we will illustrate the HERMES payload design, highlighting the technical solutions adopted to allow a wide-energy-band and sensitive X-ray and gamma-ray detector to be accommodated in a CubeSat 1U volume together with its complete control electronics and data handling system
    corecore