15 research outputs found

    Bioenergetics modelling of growth processes in parasitized Eastern Baltic cod (<i>Gadus morhua</i> L.)

    No full text
    Changes in physiological processes can reveal how individuals respond to environmental stressors. It can be difficult to link physiological responses to changes in vital rates such as growth, reproduction and survival. Here, bioenergetics modelling can aid in understanding non-intuitive outcomes from stressor combinations. Building on an established bioenergetics model, we examine the potential effects of parasite infection on growth rate and body condition. Parasites represent an overlooked biotic factor, despite their known effects on the physiology of the host organism. As a case study, we use the host–parasite system of Eastern Baltic cod (Gadus morhua) infected with the parasitic nematode Contraceacum osculatum. Eastern Baltic cod have during the past decade experienced increasing infection loads with C. osculatum that have been shown to lead to physiological changes. We hypothesized that infection with parasites affects cod growth negatively as previous studies reveal that the infections lead to reduced energy turnover, severe liver disease and reduced nutritional condition. To test this, we implemented new variables into the bioenergetics model representing the physiological changes in infected fish and parameterized these based on previous experimental data. We found that growth rate and body condition decreased with increased infection load. Highly infected cod reach a point of no return where their energy intake cannot maintain a surplus energy balance, which may eventually lead to induced mortality. In conclusion, parasite infections cannot be ignored when assessing drivers of fish stock dynamics.publishedVersio

    Parasite load of Atlantic cod Gadus morhua in the Baltic Sea assessed by the liver category method, and associations with infection density and critical condition

    No full text
    During the 2010s, Atlantic cod Gadus morhua L. in the eastern Baltic Sea experienced increasing infection loads of the parasitic nematode Contracaecum osculatum (Rudolphi) in their livers. Starting in 2021, a mandatory part of the routine sampling protocol on Baltic monitoring surveys is to assign a liver category to individual cod livers, based on the number of nematodes visible on the liver surface, to follow spatiotemporal changes in nematode infection loads. The validity of the liver category method has never been evaluated. Based on data from 642 cod livers, the method was verified and found to be a good predictor of the total number of nematodes. Moreover, the probability of cod being in a critical condition increased with the parasite load. In addition to their direct applicability to Baltic cod, the present findings may inspire others working with disease in fish stocks to include parasite monitoring

    Data from: Catastrophic dynamics limit Atlantic cod recovery

    No full text
    Collapses and regime changes are pervasive in complex systems (such as marine ecosystems) governed by multiple stressors. The demise of Atlantic cod (Gadus morhua) stocks constitutes a text book example of the consequences of overexploiting marine living resources, yet the drivers of these nearly synchronous collapses are still debated. Moreover, it is still unclear why rebuilding of collapsed fish stocks such as cod is often slow or absent. Here we apply the stochastic cusp model, based on catastrophe theory, and show that collapse and recovery of cod stocks are potentially driven by the specific interaction between exploitation pressure and environmental drivers. Our statistical modelling study demonstrates that for most of the cod stocks ocean warming could induce a non-linear discontinuous relationship between fishing pressure and stock size, which would explain hysteresis in their response to reduced exploitation pressure. Our study suggests further that a continuing increase in ocean temperatures will likely limit productivity and hence future fishing opportunities for most cod stocks of the Atlantic Ocean. Moreover, our study contributes to the ongoing discussion on the importance of climate and fishing effects on commercially exploited fish stocks, highlighting the importance of considering discontinuous dynamics in holistic ecosystem-based management approaches, particularly under climate change

    Data from: Catastrophic dynamics limit Atlantic cod recovery

    No full text
    Collapses and regime changes are pervasive in complex systems (such as marine ecosystems) governed by multiple stressors. The demise of Atlantic cod (Gadus morhua) stocks constitutes a text book example of the consequences of overexploiting marine living resources, yet the drivers of these nearly synchronous collapses are still debated. Moreover, it is still unclear why rebuilding of collapsed fish stocks such as cod is often slow or absent. Here we apply the stochastic cusp model, based on catastrophe theory, and show that collapse and recovery of cod stocks are potentially driven by the specific interaction between exploitation pressure and environmental drivers. Our statistical modelling study demonstrates that for most of the cod stocks ocean warming could induce a non-linear discontinuous relationship between fishing pressure and stock size, which would explain hysteresis in their response to reduced exploitation pressure. Our study suggests further that a continuing increase in ocean temperatures will likely limit productivity and hence future fishing opportunities for most cod stocks of the Atlantic Ocean. Moreover, our study contributes to the ongoing discussion on the importance of climate and fishing effects on commercially exploited fish stocks, highlighting the importance of considering discontinuous dynamics in holistic ecosystem-based management approaches, particularly under climate change

    Data from: Catastrophic dynamics limit Atlantic cod recovery

    Get PDF
    Collapses and regime changes are pervasive in complex systems (such as marine ecosystems) governed by multiple stressors. The demise of Atlantic cod (Gadus morhua) stocks constitutes a text book example of the consequences of overexploiting marine living resources, yet the drivers of these nearly synchronous collapses are still debated. Moreover, it is still unclear why rebuilding of collapsed fish stocks such as cod is often slow or absent. Here we apply the stochastic cusp model, based on catastrophe theory, and show that collapse and recovery of cod stocks are potentially driven by the specific interaction between exploitation pressure and environmental drivers. Our statistical modelling study demonstrates that for most of the cod stocks ocean warming could induce a non-linear discontinuous relationship between fishing pressure and stock size, which would explain hysteresis in their response to reduced exploitation pressure. Our study suggests further that a continuing increase in ocean temperatures will likely limit productivity and hence future fishing opportunities for most cod stocks of the Atlantic Ocean. Moreover, our study contributes to the ongoing discussion on the importance of climate and fishing effects on commercially exploited fish stocks, highlighting the importance of considering discontinuous dynamics in holistic ecosystem-based management approaches, particularly under climate change
    corecore