21 research outputs found

    Cell wall composition and biomass digestibility diversity in Mexican maize (Zea mays L) landraces and CIMMYT inbred lines

    Get PDF
    Maize is one of the most important crops worldwide. Historically, breeding efforts in this crop have been primarily focused on the improvement of grain yield and stability and just recently also on the potential utility of maize stover (above ground biomass excluding the grain) as a source of biomass for the production of feed, fiber and cellulosic ethanol. The International Maize and Wheat Improvement Center (CIMMYT) holds one of the largest maize germplasm collections in the world and therefore is an important source of phenotypic and genetic diversity for many traits. Our objectives were to assess the phenotypic diversity for cell wall composition and biomass digestibility in Mexican tropical, subtropical and highland maize landraces and elite maize lines (CMLs) in the CIMMYT germplasm collection, as well as to evaluate the relationship between place of origin of these materials and phenotypic expression of biomass compositional traits. The range of variation for neutral detergent fiber for three groups of landraces was from 47 to 73%. Slightly larger levels of phenotypic variation were observed for this trait in the set of CMLs evaluated (42 to 78%). Some of the inbred lines, such as CML 507, presented superior characteristics in terms of cell wall composition and digestibility. The Tuxpeño tropical-subtropical race, widely used in CIMMYT breeding programs, formed a cluster characterized by high cell wall content and low biomass digestibility. The CIMMYT germplasm collection appears to be a vast source of untapped genetic and phenotypic variation for the improvement of maize biomass composition

    Provitamin A Carotenoids in Grain Reduce Aflatoxin Contamination of Maize While Combating Vitamin A Deficiency

    Get PDF
    Aflatoxin contamination of maize grain and products causes serious health problems for consumers worldwide, and especially in low- and middle-income countries where monitoring and safety standards are inconsistently implemented. Vitamin A deficiency (VAD) also compromises the health of millions of maize consumers in several regions of the world including large parts of sub-Saharan Africa. We investigated whether provitamin A (proVA) enriched maize can simultaneously contribute to alleviate both of these health concerns. We studied aflatoxin accumulation in grain of 120 maize hybrids formed by crossing 3 Aspergillus flavus resistant and three susceptible lines with 20 orange maize lines with low to high carotenoids concentrations. The hybrids were grown in replicated, artificially-inoculated field trials at five environments. Grain of hybrids with larger concentrations of beta-carotene (BC), beta-cryptoxanthin (BCX) and total proVA had significantly less aflatoxin contamination than hybrids with lower carotenoids concentrations. Aflatoxin contamination had negative genetic correlation with BCX (-0.28, p < 0.01), BC (-0.18, p < 0.05), and proVA (-0.23, p < 0.05). The relative ease of breeding for increased proVA carotenoid concentrations as compared to breeding for aflatoxin resistance in maize suggests using the former as a component of strategies to combat aflatoxin contamination problems for maize. Our findings indicate that proVA enriched maize can be particularly beneficial where the health burdens of exposure to aflatoxin and prevalence of VAD converge with high rates of maize consumption

    Harnessing genetic potential of wheat germplasm banks through impact-oriented-prebreeding for future food and nutritional security

    Get PDF
    The value of exotic wheat genetic resources for accelerating grain yield gains is largely unproven and unrealized. We used next-generation sequencing, together with multi-environment phenotyping, to study the contribution of exotic genomes to 984 three-way-cross-derived (exotic/elite1//elite2) pre-breeding lines (PBLs). Genomic characterization of these lines with haplotype map-based and SNP marker approaches revealed exotic specific imprints of 16.1 to 25.1%, which compares to theoretical expectation of 25%. A rare and favorable haplotype (GT) with 0.4% frequency in gene bank identified on chromosome 6D minimized grain yield (GY) loss under heat stress without GY penalty under irrigated conditions. More specifically, the ‘T’ allele of the haplotype GT originated in Aegilops tauschii and was absent in all elite lines used in study. In silico analysis of the SNP showed hits with a candidate gene coding for isoflavone reductase IRL-like protein in Ae. tauschii. Rare haplotypes were also identified on chromosomes 1A, 6A and 2B effective against abiotic/biotic stresses. Results demonstrate positive contributions of exotic germplasm to PBLs derived from crosses of exotics with CIMMYT’s best elite lines. This is a major impact-oriented pre-breeding effort at CIMMYT, resulting in large-scale development of PBLs for deployment in breeding programs addressing food security under climate change scenarios

    Redesigning crop varieties to win the race between climate change and food security

    Get PDF
    Climate change poses daunting challenges to agricultural production and food security. Rising temperatures, shifting weather patterns, and more frequent extreme events have already demonstrated their effects on local, regional, and global agricultural systems. Crop varieties that withstand climate-related stresses and are suitable for cultivation in innovative cropping systems will be crucial to maximize risk avoidance, productivity, and profitability under climate-changed environments. We surveyed 588 expert stakeholders to predict current and novel traits that may be essential for future pearl millet, sorghum, maize, groundnut, cowpea, and common bean varieties, particularly in sub-Saharan Africa. We then review the current progress and prospects for breeding three prioritized future-essential traits for each of these crops. Experts predict that most current breeding priorities will remain important, but that rates of genetic gain must increase to keep pace with climate challenges and consumer demands. Importantly, the predicted future-essential traits include innovative breeding targets that must also be prioritized; for example, (1) optimized rhizosphere microbiome, with benefits for P, N, and water use efficiency, (2) optimized performance across or in specific cropping systems, (3) lower nighttime respiration, (4) improved stover quality, and (5) increased early vigor. We further discuss cutting-edge tools and approaches to discover, validate, and incorporate novel genetic diversity from exotic germplasm into breeding populations with unprecedented precision, accuracy, and speed. We conclude that the greatest challenge to developing crop varieties to win the race between climate change and food security might be our innovativeness in defining and boldness to breed for the traits of tomorrow

    Genome editing, gene drives, and synthetic biology: Will they contribute to disease-resistant crops, and who will benefit?

    No full text
    PRIFPRI3; CRP2; CRP3.1; CRP3.2; ISIEPTD; PIMCGIAR Research Program on Policies, Institutions, and Markets (PIM); CGIAR Research Program on Maize (MAIZE); CGIAR Research Program on Wheat (WHEAT

    Genome-edited crops for improved food security of smallholder farmers

    No full text
    Widespread enthusiasm about potential contributions of genome-edited crops to address climate change, food security, nutrition and health, environmental sustainability and diversification of agriculture is dampened by concerns about the associated risks. Analysis of the top seven risks of genome-edited crops finds that the scientific risks are comparable to those of accepted, past and current breeding methods, but failure to address regulatory, legal and trade framework, and the granting of social license, squanders the potential benefits.PRIFPRI3; ISI; CRP2; 1 Fostering Climate-Resilient and Sustainable Food Supply; 5 Strengthening Institutions and GovernanceEPTD; PIMCGIAR Research Program on Policies, Institutions, and Markets (PIM

    High-provitamin A carotenoid (orange) maize increases hepatic vitamin A reserves of offspring in a vitamin A depleted sow-piglet model during lactation

    No full text
    The relationship of dietary vitamin A transfer from mother to fetus is not well understood. The difference in swine offspring liver reserves was investigated between single-dose vitamin A provided to the mother post-conception compared with continuous provitamin A carotenoid dietary intake from biofortified (enhanced provitamin A) orange maize (OM) fed during gestation and lactation. Vitamin A-depleted sows were fed OM (n = 5) or white maize (WM) + 1.05 mmol retinyl palmitate administered at the beginning of gestation (n = 6). Piglets (n = 102) were killed at 0, 10, 20, and 28 d after birth. Piglets from sows fed OM had higher liver retinol reserves (P \u3c 0.0001) and a combined mean concentration from d 10 to 28 of 0.11 ± 0.030 μmol/g. Piglets from sows fed WM had higher serum retinol concentrations (0.56 ± 0.25 μmol/L; P = 0.0098) despite lower liver retinol concentrations of 0.068 ± 0.026 μmol/g from d 10 to 28. Milk was collected at 0, 5, 10, 20, and 28 d. Sows fed OM had a higher milk retinol concentration (1.36 ± 1.30 μmol/L; P = 0.038), than those fed WM (0.93 ±1.03 μmol/L). Sow livers were collected at the end of the study (n = 3/group) and had identical retinol concentrations (0.22 ± 0.05 μmol/g). Consumption of daily provitamin A carotenoids by sows during gestation and lactation increased liver retinol status in weanling piglets, illustrating the potential for provitamin A carotenoid consumption from biofortified staple foods to improve vitamin A reserves. Biofortified OM could have a measurable impact on vitamin A status in deficient populations if widely adopted

    A meta-analysis of community-based studies on quality protein maize

    No full text
    Biofortification, or the improvement of nutritional quality in food crops, is a promising strategy to combat undernutrition, particularly among the rural poor in developing countries. However, traditional methods of impact assessment are inadequate for biofortified crops, as they do not consider their nutritional benefits. Evidence for the nutritional impact of maize varieties with improved protein quality, collectively known as quality protein maize (QPM), was evaluated using meta-analysis of randomized, controlled studies in target communities.A new and generalizable effect size was proposed to quantify the impact of QPM on a key outcome, child growth. The results indicated that consumption of QPM instead of conventional maize leads to a 12% (95% CI: 7–18%) increase in the rate of growth in weight and a 9% (95% CI: 6–15%) increase in the rate of growth in height in infants and young children with mild to moderate undernutrition from populations in which maize is the major staple food. The proposed effect size and use of bootstrapping to determine statistical significance addressed some methodological limitations in the existing studies
    corecore