679 research outputs found

    ENPP1, premier exemple d’un dĂ©terminant gĂ©nĂ©tique commun Ă  l’obĂ©sitĂ© et au diabĂšte de type 2

    Get PDF
    L’obĂ©sitĂ©, en particulier ses formes sĂ©vĂšres, est l’un des principaux facteurs de risque de diabĂšte de type 2. Par ailleurs, l’explosion de l’épidĂ©mie d’obĂ©sitĂ© infantile s’accompagne de l’apparition de formes prĂ©coces de diabĂšte de type 2, avec un syndrome mĂ©tabolique et une intolĂ©rance au glucose dĂ©tectables dĂšs l’adolescence. Ces donnĂ©es suggĂšrent l’existence de dĂ©terminants molĂ©culaires primitifs communs entre obĂ©sitĂ© sĂ©vĂšre et prĂ©coce et diabĂšte de type 2, qui partageraient une insulinorĂ©sistance gĂ©nĂ©tiquement dĂ©terminĂ©e. Dans ce contexte, l’identification, sur la rĂ©gion chromosomique 6q liĂ©e Ă  la « diabĂ©sité », du gĂšne ENPP1 codant pour un inhibiteur du rĂ©cepteur de l’insuline, dont des variants codants et non codants contribuent au risque gĂ©nĂ©tique de cette affection, est un pas vers la dissection gĂ©nĂ©tique des obĂ©sitĂ©s les plus diabĂ©togĂšnes. Ces rĂ©sultats ouvrent des perspectives nouvelles vers le profilage gĂ©nĂ©tique et biologique des adolescents obĂšses, dans une optique de prĂ©vention et de traitement de la « diabĂ©sité » et de ses complications vasculaires.Clinical studies have established the strong link between obesity and type 2 diabetes, especially in children, where the rising prevalence of childhood severe obesity has preceded the recent emergence of early-onset forms of “diabesity”. These data suggested a common genetic background shared by both conditions, which was also supported by the identification by genome scans of several diabesity chromosomal regions of linkage. The genetic investigation of early-onset form of familial obesity linkage to chromosome 6q led to the identification of ENPP1, an inhibitor of the insulin receptor, as a possible molecular mechanism behind both obesity and type 2 diabetes. Analysis of the DNA variations of ENPP1 in 6,147 subjects showed association between a combination of variants and both childhood obesity, morbid or moderate obesity in adults and also with type 2 diabetes. This study provides a first molecular basis for the physiopathologic association between severe insulin resistance and obesity, and further type 2 diabetes, and offers a new perspective for prevention and treatment of these conditions

    L’ùre du gros

    Get PDF
    Contrairement Ă  l’obĂ©sitĂ©, le diabĂšte fait depuis longtemps l’objet de nombreux travaux de recherche grĂące notamment aux Ă©tudes de Claude Bernard dĂšs le XIXe siĂšcle, portant sur la glycĂ©mie animale et la production du sucre par le foie. L’obĂ©sitĂ©, quant Ă  elle est devenue objet de science il y a seulement 13 ans par la dĂ©couverte d’une hormone rĂ©gulatrice de l’appĂ©tit appelĂ©e leptine. Si Ă  l’origine, les travaux de recherche Ă©taient davantage axĂ©s sur les sciences exactes comme la physique ou..

    Inflammatory Role of Toll-Like Receptors in Human and Murine Adipose Tissue

    Get PDF
    It was recently demonstrated that TLR4 activation via dietary lipids triggers inflammatory pathway and alters insulin responsiveness in the fat tissue during obesity. Here, we question whether other TLR family members could participate in the TLR-mediated inflammatory processes occurring in the obese adipose tissue. We thus studied the expression of TLR1, TLR2, TLR4, and TLR6 in adipose tissue. These receptors are expressed in omental and subcutaneous human fat tissue, the expression being higher in the omental tissue, independently of the metabolic status of the subject. We demonstrated a correlation of TLRs expression within and between each depot suggesting a coregulation. Murine 3T3-L1 preadipocyte cells stimulated with Pam3CSK4 induced the expression of some proinflammatory markers. Therefore, beside TLR4, other toll-like receptors are differentially expressed in human fat tissue, and functional in an adipocyte cell line, suggesting that they might participate omental adipose tissue-related inflammation that occurs in obesity

    Early metabolic markers identify potential targets for the prevention of type 2 diabetes

    Get PDF
    Aims/hypothesis The aims of this study were to evaluate systematically the predictive power of comprehensive metabolomics profiles in predicting the future risk of type 2 diabetes, and to identify a panel of the most predictive metabolic markers. Methods We applied an unbiased systems medicine approach to mine metabolite combinations that provide added value in predicting the future incidence of type 2 diabetes beyond known risk factors. We performed mass spectrometry-based targeted, as well as global untargeted, metabolomics, measuring a total of 568 metabolites, in a Finnish cohort of 543 nondiabetic individuals from the Botnia Prospective Study, which included 146 individuals who progressed to type 2 diabetes by the end of a 10 year follow-up period. Multivariate logistic regression was used to assess statistical associations, and regularised least-squares modelling was used to perform machine learning-based risk classification and marker selection. The predictive performance of the machine learning models and marker panels was evaluated using repeated nested cross-validation, and replicated in an independent French cohort of 1044 individuals including 231 participants who progressed to type 2 diabetes during a 9 year follow-up period in the DESIR (Data from an Epidemiological Study on the Insulin Resistance Syndrome) study. Results Nine metabolites were negatively associated (potentially protective) and 25 were positively associated with progression to type 2 diabetes. Machine learning models based on the entire metabolome predicted progression to type 2 diabetes (area under the receiver operating characteristic curve, AUC = 0.77) significantly better than the reference model based on clinical risk factors alone (AUC = 0.68; DeLong's p = 0.0009). The panel of metabolic markers selected by the machine learning-based feature selection also significantly improved the predictive performance over the reference model (AUC = 0.78; p = 0.00019; integrated discrimination improvement, IDI = 66.7%). This approach identified novel predictive biomarkers, such as alpha-tocopherol, bradykinin hydroxyproline, X-12063 and X-13435, which showed added value in predicting progression to type 2 diabetes when combined with known biomarkers such as glucose, mannose and alpha-hydroxybutyrate and routinely used clinical risk factors. Conclusions/interpretation This study provides a panel of novel metabolic markers for future efforts aimed at the prevention of type 2 diabetes.Peer reviewe

    Identification of a Variable Number of Tandem Repeats Polymorphism and Characterization of LEF-1 Response Elements in the Promoter of the IDO1 Gene

    Get PDF
    Indoleamine 2,3-dioxygenase (IDO) catalyzes the first and rate-limiting step of the kynurenine pathway that is an important component of immunomodulatory and neuromodulatory processes. The IDO1 gene is highly inducible by IFN-γ and TNF-α through interaction with cis-acting regulatory elements of the promoter region. Accordingly, functional polymorphisms in the IDO1 promoter could partly explain the interindividual variability in IDO expression that has been previously documented.A PCR-sequencing strategy, applied to DNA samples from healthy Caucasians, allowed us to identify a VNTR polymorphism in the IDO1 promoter, which correlates significantly with serum tryptophan concentration, controlled partially by IDO activity, in female subjects, but not in males. Although this VNTR does not appear to affect basal or cytokine-induced promoter activity in gene reporter assays, it contains novel cis-acting elements. Three putative LEF-1 binding sites, one being located within the VNTR repeat motif, were predicted in silico and confirmed by chromatin immunoprecipitation. Overexpression of LEF-1 in luciferase assays confirmed an interaction between LEF-1 and the predicted transcription factor binding sites, and modification of the LEF-1 core sequence within the VNTR repeat motif, by site-directed mutagenesis, resulted in an increase in promoter activity.The identification of a VNTR in the IDO1 promoter revealed a cis-acting element interacting with the most downstream factor of the Wnt signaling pathway, suggesting novel mechanisms of regulation of IDO1 expression. These data offer new insights, and suggest further studies, into the role of IDO in various pathological conditions, particularly in cancer where IDO and the Wnt pathway are strongly dysregulated

    Analysis of sequence variability in the CART gene in relation to obesity in a Caucasian population

    Get PDF
    BACKGROUND: Cocaine and amphetamine regulated transcript (CART) is an anorectic neuropeptide located principally in hypothalamus. CART has been shown to be involved in control of feeding behavior, but a direct relationship with obesity has not been established. The aim of this study was to evaluate the effect of polymorphisms within the CART gene with regards to a possible association with obesity in a Caucasian population. RESULTS: Screening of the entire gene as well as a 3.7 kb region of 5' upstream sequence revealed 31 SNPs and 3 rare variants ; 14 of which were subsequently genotyped in 292 French morbidly obese subjects and 368 controls. Haplotype analysis suggested an association with obesity which was found to be mainly due to SNP-3608T>C (rs7379701) (p = 0.009). Genotyping additional cases and controls also of European Caucasian origin supported further this possible association between the CART SNP -3608T>C T allele and obesity (global p-value = 0.0005). Functional studies also suggested that the SNP -3608T>C could modulate nuclear protein binding. CONCLUSION: CART SNP -3608T>C may possibly contribute to the genetic risk for obesity in the Caucasian population. However confirmation of the importance of the role of the CART gene in energy homeostasis and obesity will require investigation and replication in further populations

    Molecular Diagnosis of Neonatal Diabetes Mellitus Using Next-Generation Sequencing of the Whole Exome

    Get PDF
    Background: Accurate molecular diagnosis of monogenic non-autoimmune neonatal diabetes mellitus (NDM) is critical for patient care, as patients carrying a mutation in KCNJ11 or ABCC8 can be treated by oral sulfonylurea drugs instead of insulin therapy. This diagnosis is currently based on Sanger sequencing of at least 42 PCR fragments from the KCNJ11, ABCC8, and INS genes. Here, we assessed the feasibility of using the next-generation whole exome sequencing (WES) for the NDM molecular diagnosis. Methodology/Principal Findings: We carried out WES for a patient presenting with permanent NDM, for whom mutations in KCNJ11, ABCC8 and INS and abnormalities in chromosome 6q24 had been previously excluded. A solution hybridization selection was performed to generate WES in 76 bp paired-end reads, by using two channels of the sequencing instrument. WES quality was assessed using a high-resolution oligonucleotide whole-genome genotyping array. From our WES with high-quality reads, we identified a novel non-synonymous mutation in ABCC8 (c.1455G.C/p.Q485H), despite a previous negative sequencing of this gene. This mutation, confirmed by Sanger sequencing, was not present in 348 controls and in the patient’s mother, father and young brother, all of whom are normoglycemic. Conclusions/Significance: WES identified a novel de novo ABCC8 mutation in a NDM patient. Compared to the current Sanger protocol, WES is a comprehensive, cost-efficient and rapid method to identify mutations in NDM patients. W

    TCF7L2 rs7903146-macronutrient interaction in obese individuals' responses to a 10-wk randomized hypoenergetic diet

    Get PDF
    BACKGROUND: Transcription factor 7-like 2 (TCF7L2) rs7903146 associates with type 2 diabetes and may operate via impaired glucagon-like peptide 1 secretion, which is stimulated more by fat than by carbohydrate ingestion. OBJECTIVE: The objective was to examine the interaction between TCF7L2 rs7903146 and dietary fat and carbohydrate [high-fat, low-carbohydrate: 40-45% of energy as fat (HF); compared with low-fat, high-carbohydrate: 20-25% of energy as fat (LF)] in obese individuals' responses to a 10-wk hypoenergetic diet (-600 kcal/d). DESIGN: European, obese participants (n = 771) were randomly assigned to receive an HF or an LF diet. Body weight, fat mass (FM), fat-free mass (FFM), waist circumference (WC), resting energy expenditure (REE), fasting fat oxidation in percentage of REE (FatOx), homeostasis model assessed insulin release (HOMA-beta), and HOMA-insulin resistance (HOMA-IR) were determined at baseline and after the intervention; 739 individuals were genotyped for rs7903146. RESULTS: Average weight loss was 6.9 kg with the LF and 6.6 kg with the HF (difference between diets, NS) diet. Among individuals who were homozygous for the T-risk allele, those in the HF diet group experienced smaller weight losses (Deltaweight) (2.6 kg; P = 0.009; n = 622), smaller DeltaFFM (1.6 kg; P = 0.027; n = 609), smaller DeltaWC (3.3 cm; P = 0.010; n = 608), and a smaller DeltaHOMA-IR (1.3 units; P = 0.004; n = 615) than did the LF diet group. For C allele carriers, there were no differences between the HF and LF diet groups. For the HF diet group, each additional T allele was associated with a reduced loss of FM (0.67 kg; P = 0.019; n = 609). TCF7L2 rs7903146 was not associated with DeltaREE, DeltaFatOx, DeltaHOMA-beta, or dropout. CONCLUSION: Our results suggest that obese individuals who are homozygous for the TCF7L2 rs7903146 T-risk allele are more sensitive to LF than to HF weight-loss diets

    Mechanisms behind the immediate effects of Roux-en-Y gastric bypass surgery on type 2 diabetes

    Get PDF
    BACKGROUND: The most common bariatric surgery, Roux-en-Y gastric bypass, leads to glycemia normalization in most patients long before there is any appreciable weight loss. This effect is too large to be attributed purely to caloric restriction, so a number of other mechanisms have been proposed. The most popular hypothesis is enhanced production of an incretin, active glucagon-like peptide-1 (GLP-1), in the lower intestine. We therefore set out to test this hypothesis with a model which is simple enough to be robust and credible. METHOD: Our method involves (1) setting up a set of time-dependent equations for the concentrations of the most relevant species, (2) considering an “adiabatic” (or quasi-equilibrium) state in which the concentrations are slowly varying compared to reaction rates (and which in the present case is a postprandial state), and (3) solving for the dependent concentrations (of e.g. insulin and glucose) as an independent concentration (of e.g. GLP-1) is varied. RESULTS: Even in the most favorable scenario, with maximal values for (i) the increase in active GLP-1 concentration and (ii) the effect of GLP-1 on insulin production, enhancement of GLP-1 alone cannot account for the observations. I.e., the largest possible decrease in glucose predicted by the model is smaller than reported decreases, and the model predicts no decrease whatsoever in glucose ×insulin, in contrast to large observed decreases in homeostatic model assessment insulin resistance (HOMA-IR). On the other hand, both effects can be accounted for if the surgery leads to a substantial increase in some substance that opens an alternative insulin-independent pathway for glucose transport into muscle cells, which perhaps uses the same intracellular pool of GLUT-4 that is employed in an established insulin-independent pathway stimulated by muscle contraction during exercise. CONCLUSIONS: Glycemia normalization following Roux-en-Y gastric bypass is undoubtedly caused by a variety of mechanisms, which may include caloric restriction, enhanced GLP-1, and perhaps others proposed in earlier papers on this subject. However, the present results suggest that another possible mechanism should be added to the list of candidates: enhanced production in the lower intestine of a substance which opens an alternative insulin-independent pathway for glucose transport
    • 

    corecore