70 research outputs found

    Effects of phylogenetic associations on environmental and temporal niche partitioning among sympatric mammals

    Get PDF
    Mammals have evolved to occupy spatial and temporal niches in order to optimize resource utilization and minimize predation risk or competition. Subsequently, niche partitioning may be influenced by phylogenetic associations, which could have substantial consequences for ecosystem structure and function. We use the output from occupancy models based on camera trapping data to construct a tri-partite network describing the environmental and temporal partitioning of activity among twelve sympatric mammals in the Apennine Mountains of central Italy. We further evaluate if there were any effects of phylogenetic associations on the contributions of species to the properties of this spatio-temporal network. The Apennines form a pristine region in central Italy with a relatively intact Mediterranean mammal fauna. The mammal community in our study consisted of species ranging in size from 300 gs to over 200 kg, and included herbivores, omnivores and predators. There was limited structuring of the network describing environmental and temporal niche use. Furthermore, we did not find any phylogenetic signal in species contributions to network structures, and phylogenetic relatedness among species was not associated with their similarities in environmental or spatial niche use. However, animals appeared to have partitioned environmental niches more than temporal ones, suggesting that spatial variation in resource availability may have been more important than temporal avoidance of predation risk or competition in shaping activity within this mammal community. Our study highlights the need to evaluate under which conditions evolutionary history is influencing contemporary ecological processes

    Hydrogen sulfide causes excision of a genomic island in Pseudomonas syringae pv. phaseolicola

    Get PDF
    © 2017, The Author(s). Hydrogen sulfide (H2S) is known to be an important signalling molecule in both animals and plants, despite its toxic nature. In plants it has been seen to control stomatal apertures, so altering the ability of bacteria to invade plant tissues. Bacteria are known to generate H2S as well as being exposed to plant-generated H2S. During their interaction with plants pathogenic bacteria are known to undergo alterations to their genomic complement. For example Pseudomonas syringae pv. phaseolicola (Pph) strain 1302A undergoes loss of a section of DNA known as a genomic island (PPHGI-1) when exposed to the plants resistance response. Loss of PPHGI-1 from Pph 1302A enables the pathogen to overcome the plants resistance response and cause disease. Here, with the use of H2S donor molecules, changes induced in Pph 1302A genome, as demonstrated by excision of PPHGI-1, were investigated. Pph 1302A cells were found to be resistant to low concentrations of H2S. However, at sub-lethal H2S concentrations an increase in the expression of the PPHGI-1 encoded integrase gene (xerC), which is responsible for island excision, and a subsequent increase in the presence of the circular form of PPHGI-1 were detected. This suggests that H2S is able to initiate excision of PPHGI-1 from the Pph genome. Therefore, H2S that may emanate from the plant has an effect on the genome structure of invading bacteria and their ability to cause disease in plants. Modulation of such plant signals may be a way to increase plant defence responses for crops in the future

    DNA integrity of onion root cells under catechol influence

    No full text
    Catechol is a highly toxic organic pollutant, usually abundant in the waste effluents of industrial processes and agricultural activities. The environmental sources of catechol include pesticides, wood preservatives, tanning lotion, cosmetic creams, dyes, and synthetic intermediates. Genotoxicity of catechol at a concentration range 5 × 10-1-5 mM was evaluated by applying random amplified polymorphic DNA (RAPD) and time-lapse DNA laddering tests using onion (Allium cepa) root cells as the assay system. RAPD analysis revealed polymorphisms in the nucleotidic sequence of DNA that reflected the genotoxic potential of catechol to provoke point mutations, or deletions, or chromosomal rearrangements. Time-lapse DNA laddering test provided evidence that catechol provoked DNA necrosis and apoptosis. Acridine orange/ethidium bromide staining could distinguish apoptotic from necrotic cells in root cells of A. cepa. © 2013 Springer-Verlag Berlin Heidelberg

    A stiffness volume averaging based approach to model non-crimp fabric reinforced composites

    No full text
    "A representative volume element (RVE) based model to evaluate the mechanical performance of noncrimp fabric (NCF) composites has been developed and presented hereafter. By means of the stiffness averaging method, the modelling procedure is able to simulate the NCF’s elastic properties taking into account the effects of process-induced defects and final geometrical configuration. Microscopy analysis has been used to quantitatively evaluate the effects of tow waviness, stitching geometrical parameters and matrix porosity; these features have been included as sub-models into the final model. Numerical predictions have been compared to the results of tensile tests performed on composite coupons. A geometrical parameter characterising the undulation of the tows has been introduced and a sensitivity analysis has been performed on the model with different undulations.
    corecore