139 research outputs found

    Elastic anomalies associated with domain switching in BaTiO3 single crystals under in-situ electrical cycling

    Get PDF
    The elastic response of BaTiO3 single crystals during electric field cycling at room temperature has been studied using in-situ Resonant Ultrasound Spectroscopy (RUS), which allows monitoring of both the elastic and anelastic changes caused by ferroelectric polarization switching. We find that the first ferroelectric switching of a virgin single crystal is dominated by ferroelastic 90° switching. In subsequent ferroelectric switching, ferroelastic switching is reduced by domain pinning and by the ferroelectric domains, as confirmed by polarized light microscopy. RUS under in-situ electric field therefore demonstrates to be an effective technique for the investigation of electromechanical coupling in ferroelectrics

    Elastic anomalies associated with domain switching in BaTiO3 single crystals under in situ electrical cycling

    Get PDF
    The elastic response of BaTiO3 single crystals during electric field cycling at room temperature has been studied using in situ Resonant Ultrasound Spectroscopy (RUS), which allows monitoring of both the elastic and anelastic changes caused by ferroelectric polarization switching. We find that the first ferroelectric switching of a virgin single crystal is dominated by ferroelastic 90° switching. In subsequent ferroelectric switching, ferroelastic switching is reduced by domain pinning and by the predominance of 180° ferroelectric domains, as confirmed by polarized light microscopy. RUS under in situ electric field therefore demonstrates to be an effective technique for the investigation of electromechanical coupling in ferroelectrics

    Exact synchronization bound for coupled time-delay systems

    Get PDF
    We obtain an exact bound for synchronization in coupled time-delay systems using the generalized Halanay inequality for the general case of time-dependent delay, coupling, and coefficients. Furthermore, we show that the same analysis is applicable to both uni- and bidirectionally coupled time-delay systems with an appropriate evolution equation for their synchronization manifold, which can also be defined for different types of synchronization. The exact synchronization bound assures an exponential stabilization of the synchronization manifold which is crucial for applications. The analytical synchronization bound is independent of the nature of the modulation and can be applied to any time-delay system satisfying a Lipschitz condition. The analytical results are corroborated numerically using the Ikeda system

    Stability and noise properties of diode lasers with phase-conjugate feedback

    Full text link

    Local structure and order-disorder transitions in "empty" ferroelectric tetragonal tungsten bronzes

    Get PDF
    JAM would like to acknowledge the School of Chemistry, University of St Andrews for the allocation of a PhD studentship through the EPSRC doctoral training grant (EP/K503162/1). AR would like to acknowledge support through the Strategic Grant POSDRU/159/1.5/S/133255, Project ID 133255 (2014), co-financed by the European Social Fund within the Sectorial Operational Program Human Resources Development 2007–2013 and also the University of Craiova and University of Cambridge for the mobility grant “Resonant ultrasound spectroscopy. (RUS) characterization of dielectric and ferroelectric tetragonal tungsten bronzes”. The work carried out at the University of St Andrews and University of Cambridge is part of an EPSRC- funded collaboration (EP/P02453X/1 and EP/P024904/1).The ‘empty’ tetragonal tungsten bronze Ba4La0.67 1.33Nb10O30 displays both relaxor-like and normal dielectric anomalies as a function of temperature; the former is associated with loss of ferroelectricity and was proposed to originate from anion disordering [Chem. Mater., 2016, 28 , 4616-4627]. Here we present total neutron scattering and pair distribution function (PDF) analysis which shows an increase in the distribution of oxygen-oxygen distances at the relaxor transition and which supports the proposed anion disordering mechanism. The disordering process can be destabilised by reducing the average A-cation size (i.e. Nd-doping: Ba4(La1-xNdx)0.67Nb10O30); this introduces a more strongly propagating tilt system in line with the previously reported crystal-chemical framework model [Chem. Mater., 2015, 27 , 3250-3261]. Mechanical loss data obtained using resonant ultrasound spectroscopy also indicate destabilisation of the disordering process with increasing Nd-substitution.PostprintPeer reviewe

    Voltage-driven displacement of magnetic vortex cores

    Get PDF
    Abstract Magnetic vortex cores in polycrystalline Ni discs underwent non-volatile displacements due to voltage-driven ferroelectric domain switching in single-crystal BaTiO3. This behaviour was observed using photoemission electron microscopy to image both the ferromagnetism and ferroelectricity, while varying in-plane sample orientation. The resulting vector maps of disc magnetization match well with micromagnetic simulations, which show that the vortex core is translated by the transit of a ferroelectric domain wall, and thus the inhomogeneous strain with which it is associated. The non-volatility is attributed to pinning inside the discs. Voltage-driven displacement of magnetic vortex cores is novel, and opens the way for studying voltage-driven vortex dynamics.The Royal Society, Gates Cambridge, the Winton Programme for the Physics of Sustainability, Trinity College (Cambridge), Agència de Gestió d’Ajuts Universitaris i de Recerca (AGAUR) from the Catalan governmen

    Shear-strain-mediated magnetoelectric effects revealed by imaging.

    Get PDF
    Large changes in the magnetization of ferromagnetic films can be electrically driven by non-180° ferroelectric domain switching in underlying substrates, but the shear components of the strains that mediate these magnetoelectric effects have not been considered so far. Here we reveal the presence of these shear strains in a polycrystalline film of Ni on a 0.68Pb(Mg1/3Nb2/3)O3-0.32PbTiO3 substrate in the pseudo-cubic (011)pc orientation. Although vibrating sample magnetometry records giant magnetoelectric effects that are consistent with the hitherto expected 90° rotations of a global magnetic easy axis, high-resolution vector maps of magnetization (constructed from photoemission electron microscopy data, with contrast from X-ray magnetic circular dichroism) reveal that the local magnetization typically rotates through smaller angles of 62-84°. This shortfall with respect to 90° is a consequence of the shear strain associated with ferroelectric domain switching. The non-orthogonality represents both a challenge and an opportunity for the development and miniaturization of magnetoelectric devices.Isaac Newton Trust, the Royal Society, University of Wisconsin Madison, Agència de Gestió d'Ajuts Universitaris i de Recercaa - Generalitat de Cataluny
    corecore