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We obtain an exact bound for synchronization in coupled time-delay systems using the generalized Halanay
inequality for the general case of time-dependent delay, coupling, and coefficients. Furthermore, we show
that the same analysis is applicable to both uni- and bidirectionally coupled time-delay systems with an
appropriate evolution equation for their synchronization manifold, which can also be defined for different types
of synchronization. The exact synchronization bound assures an exponential stabilization of the synchronization
manifold which is crucial for applications. The analytical synchronization bound is independent of the nature
of the modulation and can be applied to any time-delay system satisfying a Lipschitz condition. The analytical
results are corroborated numerically using the Ikeda system.
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Synchronization is a fundamental nonlinear phenomenon
observed in diverse natural, engineering, and social systems
[1,2]. Investigations on synchronization in coupled nonlinear
time-delay systems have received an immense amount of
attention in current research due to their dynamical complexity
[3–14] and their ease of experimental realization [15–18]. Syn-
chronization in systems with delay has potential applications
in enhancement of output power in lasers, generating high-
precision random numbers, high-speed information transfer
due to broad bandwidth, optimization of nonlinear systems
parameters, pattern recognition, (cf. [3–18]), among many
others. Furthermore, time delay gives rise to a plethora of novel
collective dynamical behaviors and explains mechanisms
behind several natural phenomena. Examples include the key
role of coupling and delay in resting brain fluctuations, a
temporal coherent state [19], zero time lag neuronal syn-
chrony despite long conduction delays [20], the coexistence
of coherent, and incoherent states with nonlocal delayed
coupling [21].

Analytical frameworks have been employed in deducing
conditions for stable synchronization in coupled time-delay
systems. In particular, the Krasovskii-Lyapunov functional has
been widely used to for this [3–12]. Recently, the Krasovskii-
Lyapunov theory is applied to time-delay systems with time-
dependent coefficients [9]. However, all these works require
the derivative of the positive definite Lyapunov functional to
be negative and are applied only to unidirectionally coupled
time-delay systems.

Here, we provide an exact bound for the synchronization
of coupled time-delay systems with time-dependent delay,
time-dependent coupling, and time-dependent coefficients
using the generalized Halanay inequality [22,23]. The bound is
independent of conditions on the derivative of the parameters
and is less restrictive than the Lyapunov functional approach.
Furthermore, this exact synchronization bound assures an
exponentially stable synchronization compared to asymptotic
synchronization resulting from the latter. The analytical

synchronization bound is also independent of the delay, the
nonlinear function, and the modulation in time-dependent
parameters. A few recent investigations have used the Halanay
inequality along with matrix measures to demonstrate syn-
chronization but only in unidirectionally coupled time-delay
systems; e.g., in systems with constant coefficients and fixed
time delay [24] or variable but not chaotic delay [25]. But here,
we will study a very general case and obtain a less restrictive
(conservative) condition than others.

Interestingly, we will show that the same analysis is
applicable to both uni- and bidirectionally coupled time-delay
systems with an appropriate evolution equation for their
synchronization manifold. Furthermore, one can include a
large class of synchronization manifolds including complete
synchronization (CS) and generalized synchronization (GS)
under the same analysis. The synchronization manifold of
GS is constructed using the framework of the auxiliary
system approach [26] originally introduced for unidirectional
coupling. In addition, similar to GS, we also find an exact
synchronization bound for lag, anticipatory, and other sub-
classes of GS using the auxiliary system approach. To the best
of our knowledge, stability analysis for GS in bidirectionally
coupled time-delay systems has not yet been carried out. Even
for CS, there may rarely exist any analytical investigations for
bidirectionally coupled time-delay systems.

The paper is organized as follows: First, we consider the
simplest case where only the delay is time dependent and
the coupling and the coefficients are constant to infer an
exact synchronization bound for both uni- and bidirectionally
coupled time-delay systems. Next, we extend our analyses
for both the delay and the coupling parameters depending
on time. Finally, we yield an exact synchronization bound
for the more general case by including time-dependent
coefficients using the generalized Halanay inequality. We
corroborate the analytical synchronization bounds for all three
cases by numerical analysis using the well-known Ikeda
system.
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We study the following coupled scalar time-delay system:

ẋ(t) = −a(t)x(t) + b(t)f (x(t − τ (t))) + kx(t)(y(t) − x(t)),

(1a)

ẏ(t) = −a(t)y(t) + b(t)f (y(t − τ (t))) + ky(t)(x(t) − y(t)),

(1b)

where a(t) and b(t) are coefficients, τ (t) is the delay time,
and kx,y(t) are couplings between the drive and the response
systems, and all are time dependent. f (x) is a nonlinear
function, which is assumed to be Lipschitz; that is, |f (y) −
f (x)| � L|y − x| for some L > 0. Here, a(t), b(t), τ (t), and
k(t) are all continuous, such that a(t) + k(t) > 0, b(t) > 0,
and 0 � τ (t) � τM . The coupling is unidirectional when
kx(t) = 0 and k(t) = ky(t) but otherwise bidirectional [k(t) =
kx(t) = ky(t)].

The time evolution of the state variable, �(t) = y(t) − x(t),
corresponding to the CS manifold of unidirectionally coupled
time-delay systems, i.e., the synchronization error, satisfies the
equation

d�2

dt
= −2[a(t) + k(t)]�2(t) + 2b(t)�(t)

× [f (y(t − τ (t))) − f (x(t − τ (t)))], (2)

and that of bidirectionally coupled time-delay systems satisfies

d�2

dt
= −2[a(t) + 2k(t)]�2(t) + 2b(t)�(t)

× [f (y(t − τ (t))) − f (x(t − τ (t)))]. (3)

Using the Lipschitz condition, we get

d�2

dt
� −2[a(t) + k(t)]�2(t) + 2b(t)L|�(t)�(t − τ (t))|,

(4)

� −2[a(t) + k(t)]�2(t) + 2b(t)LM2(t), (5)

where M(t) = sup{|�(s)|; −τM + t � s � t} for unidirec-
tional coupling and 2k(t) replaces k(t) for bidirectional
coupling in the entire manuscript.

For GS, an auxiliary system [26] y ′(t) identical to the
response system y(t) is appended to Eq. (1) and the evolution
equation of the CS manifold �(t) = y ′(t) − y(t) between
y ′(t) and y(t), identical to Eq. (3), characterizes GS between
the drive and response systems. For bidirectional coupling,
an auxiliary system x ′(t) identical to system x(t) is also
analyzed in addition to y ′(t). Now, the CS manifolds �y(t) =
y ′(t) − y(t) and �x(t) = x ′(t) − x(t), identical to Eq. (3),
characterizes GS between bidirectionally coupled systems.
The same analysis can also be applied to lag, anticipatory,
projective synchronizations and their variants including all
subclasses of GS. The following results hold when the
evolution equation for �(t) is given by Eq. (3) irrespective
of the synchronization manifold:

An exact bound can be obtained for the synchronization
error |�(t)| by using the generalized Halanay inequality
[22,23]. This inequality is proven for a function ω(t) that
satisfies the following equation:

dω

dt
� −p(t)ω(t) + q(t)�(t), (6)

where �(t) = sup{ω(s); −τM + t � s � t} for t � t0 = 0
with τM � 0. The equation for �(t)2 given by Eq. (5) is
a particular case of this equation. Here p(t) and q(t) are
continuous with p(t) � p0 > 0, and εp(t) � q(t) > 0 ∀ t � t0
with 0 � ε < 1. Note that ε can be chosen very close to 1. Then
the following generalized Halanay inequality is derived [23]:

ω(t) � �(t0) exp[−μm(t − t0)] for t � t0, (7)

where μm > 0 is given by

μm = inf{μ(t) : p(t) −μ(t) − q(t) exp[μ(t)τM ] = 0; t � t0}.
(8)

First, we study the case with time-dependent delay but
constant coefficients, a(t) = a and b(t) = b, and constant
coupling k(t) = k (and 2k for bidirectional coupling). Using
Eq. (7), one gets the exact bound for the synchronization error
|�(t)| as

|�(t)| � M(t0) exp(−λt), (9)

when ε(a + k) > bL > 0, 0 � ε < 1. This condition is satis-
fied when (a + k) > bL > 0, by choosing ε such that 1 > ε >

bL/(a + k). The exponent λ comes from

(a + k) − λ − bL exp(2λτM ) = 0, (10)

whose solution satisfies 0 < λ < (a + k − bL).
Now, we check Eq. (9) by using numerical simulations. To

this end, we consider the nonlinear system (1) with f (x) =
cos2(x + φ) corresponding to the Ikeda system [27], where
φ = 0.1 is the phase shift. A chaotic modulation in the delay
time is used, given by the xr component of the chaotic Rössler
system represented by ẋr = −yr − zr , ẏr = xr + 0.17yr , żr =
0.2 + zr (xr − 10.0). The chaotic delay time is τ (t) = τc +
hxr (t), where we shift the minimum of xr (t) to zero such
that the modulation is always positive and h = 0.1 is the
scaling factor. We have fixed τc = 2.5, hence τM = 5.808, and
L = 1 throughout the paper. We have chosen a = 1,b = 6 and
the coupling strength k = 6 satisfying 1 > ε > bL/(a + k).
The synchronization bound obtained from Eq. (9) is depicted
in Figs. 1(a) and 1(b) for uni- and bidirectional couplings,
respectively, along with the numerical synchronization error
for three different initial conditions. The uncoupled as well as
synchronized systems exhibit chaotic oscillations for the above
parameters. It is clear from this figure that the synchronization
error estimated numerically from the coupled Ikeda system (1)
for the above parameter values always lies well below the
analytical bound for the synchronization error given by Eq. (9).
The insets display the exponential decay of the synchronization
error, confirming exponential synchronization.

Next, we extend our analysis to time-dependent coupling
and time-dependent delay keeping the coefficients as constant.
Using Eq. (7), one obtains the same synchronization bound as
in Eq. (9) but with the condition ε(a + k(t)) � bL > 0, where
0 � ε < 1. Now, the exponent λ in the bound can be estimated
from

λ = inf{λ(t) : a + k(t) − λ(t) − bL exp[2λ(t)τM ]

= 0; t � t0}. (11)

It is important to emphasize that previous results for synchro-
nization conditions [9–11] are based on the linearized equation
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FIG. 1. (Color online) Simulations with time-dependent delay but constant coefficients and coupling strength. The synchronization bound
M(t0) exp(−λt) (lines connected with solid circles) and its synchronization error |�(t)| for three different initial conditions with the inset
illustrating exponential decay of |�(t)| in a semilog plot. Panel (a) is for unidirectional coupling and panel (b) is for bidirectional coupling.

for �(t). These approaches require the derivative of Lyapunov
functionals on the evolution equation corresponding to the
synchronization manifold to be negative. In particular, a suffi-
cient condition for synchronization a + k(t) > |bf ′(y(t − τ ))|
was obtained using the Krasovskii-Lyapunov theory for
the case of time-dependent coupling and constant delay in
Ref. [9], but only when the derivative of the coupling function
k̇(t) � 0. For the Ikeda system this condition is satisfied
when a + k(t) > b, i.e., the condition obtained by using the
generalized Halanay inequality, which is independent of the
sign of the derivative of the coupling. Another condition∫ ∞
t0

−[a + k(t) − b]dt = −∞ is yielded in Ref. [10] for
the same case. A bound for the synchronization error was
also obtained [11] for the case of constant coupling and
time-dependent delay, but only when the additional condition
τ̇ (t) < 1 is satisfied. Thus the synchronization bound obtained
using Eq. (7) is less restrictive than the Krasovskii-Lyapunov
theory and further assures an exponential synchronization
compared to asymptotic synchronization obtain from the
latter.

We have fixed the same parameters and the xr component
of the chaotic Rössler system for modulation in both delay
time and coupling k(t) = kc + hxr (t) as discussed above
with kc = 6.5. The analytical synchronization bound and
the numerical synchronization error of the coupled Ikeda
systems (1) for three different initial conditions are shown in
Figs. 2(a) and 2(b) for uni- and bidirectional couplings [now
k(t) = 2kc + hxr (t)], respectively. We find that the numerical
synchronization error always lies below the synchronization
bound and the insets confirm the exponential synchronization
of the synchronization error �(t).

Finally, we consider the more general case where all the
coefficients, coupling, and delay are time dependent. Again

one gets the synchronization bound as in Eq. (9) with the
condition on the parameters as ε(a(t) + k(t)) � b(t) > 0,
where 0 � ε < 1, using Eq. (7). The exponent in the syn-
chronization bound is obtained from

λ = inf{λ(t) : a(t) + k(t) − λ(t) − b(t)L exp[2λ(t)τM ] = 0}.
(12)

It is to be noted that we have obtained an exact bound for a
much more general case than investigated in Refs. [9,10] by
including a time-dependent delay and without any approxi-
mation [9,10]. Again, we have fixed the xr component of the
chaotic Rössler system as modulations in a(t) = ac + hxr (t)
and b(t) = bc + hxr (t) with ac = 1.0 and bc = 6.0, while
the modulations in τ and coupling strength are retained as
discussed above. The synchronization bound and the synchro-
nization error for three different initial condition is depicted
in Figs. 3(a) and 3(b), for uni- and bidirectionally [k(t) =
2kc + hxr (t)] coupled time-delay systems, respectively. It
is evident that the synchronization error always lies below
the analytical bound (9) and the exponential decay of the
synchronization error in the insets corroborates an exponential
synchronization of the coupled time-delay systems.

To summarize, the exact bound for the synchronization in a
coupled time-delay system with time-dependent parameters
is obtained using the generalized Halanay inequality. We
have also shown that the same analysis is applicable to
both uni- and bidirectionally coupled time-delay systems
and also covers different types of synchronization. First, we
have found an exact bound for the complete synchronization
manifold for time-dependent delay. Next, we have incorpo-
rated time-dependent coupling and finally time-dependent
coefficients of the state variables and obtained an exact
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FIG. 2. (Color online) Same as Fig. 1, except for simulations with time-dependent delay and time-dependent coupling strength but with
constant coefficients.
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FIG. 3. (Color online) Same as Fig. 1 for time-dependent delay, coefficients, and coupling strength.

bound for the synchronization error using the generalized
Halanay inequality. The analytical synchronization bound is
independent of the conditions on the derivatives of parameters
and without any approximation as in the Lyapunov functional
approach. Furthermore, it is also independent of the type of
modulation in the time-dependent parameters and the results
are general for time-delay systems satisfying the Lipschitz
condition and are not system specific. We have corroborated
the analytical synchronization bound numerically by using the
Ikeda system. It is found that the numerical synchronization

error always lies well below the analytical synchronization
bound. Furthermore, the synchronization bound leads to ex-
ponential synchronization of the coupled time-delay systems
with time-dependent parameters, which is crucial for many
applications.
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