863 research outputs found

    Fostering implementation of health services research findings into practice: a consolidated framework for advancing implementation science

    Get PDF
    Abstract Background Many interventions found to be effective in health services research studies fail to translate into meaningful patient care outcomes across multiple contexts. Health services researchers recognize the need to evaluate not only summative outcomes but also formative outcomes to assess the extent to which implementation is effective in a specific setting, prolongs sustainability, and promotes dissemination into other settings. Many implementation theories have been published to help promote effective implementation. However, they overlap considerably in the constructs included in individual theories, and a comparison of theories reveals that each is missing important constructs included in other theories. In addition, terminology and definitions are not consistent across theories. We describe the Consolidated Framework For Implementation Research (CFIR) that offers an overarching typology to promote implementation theory development and verification about what works where and why across multiple contexts. Methods We used a snowball sampling approach to identify published theories that were evaluated to identify constructs based on strength of conceptual or empirical support for influence on implementation, consistency in definitions, alignment with our own findings, and potential for measurement. We combined constructs across published theories that had different labels but were redundant or overlapping in definition, and we parsed apart constructs that conflated underlying concepts. Results The CFIR is composed of five major domains: intervention characteristics, outer setting, inner setting, characteristics of the individuals involved, and the process of implementation. Eight constructs were identified related to the intervention (e.g., evidence strength and quality), four constructs were identified related to outer setting (e.g., patient needs and resources), 12 constructs were identified related to inner setting (e.g., culture, leadership engagement), five constructs were identified related to individual characteristics, and eight constructs were identified related to process (e.g., plan, evaluate, and reflect). We present explicit definitions for each construct. Conclusion The CFIR provides a pragmatic structure for approaching complex, interacting, multi-level, and transient states of constructs in the real world by embracing, consolidating, and unifying key constructs from published implementation theories. It can be used to guide formative evaluations and build the implementation knowledge base across multiple studies and settings.http://deepblue.lib.umich.edu/bitstream/2027.42/78272/1/1748-5908-4-50.xmlhttp://deepblue.lib.umich.edu/bitstream/2027.42/78272/2/1748-5908-4-50-S1.PDFhttp://deepblue.lib.umich.edu/bitstream/2027.42/78272/3/1748-5908-4-50-S3.PDFhttp://deepblue.lib.umich.edu/bitstream/2027.42/78272/4/1748-5908-4-50-S4.PDFhttp://deepblue.lib.umich.edu/bitstream/2027.42/78272/5/1748-5908-4-50.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/78272/6/1748-5908-4-50-S2.PDFPeer Reviewe

    Topology by Design in Magnetic nano-Materials: Artificial Spin Ice

    Full text link
    Artificial Spin Ices are two dimensional arrays of magnetic, interacting nano-structures whose geometry can be chosen at will, and whose elementary degrees of freedom can be characterized directly. They were introduced at first to study frustration in a controllable setting, to mimic the behavior of spin ice rare earth pyrochlores, but at more useful temperature and field ranges and with direct characterization, and to provide practical implementation to celebrated, exactly solvable models of statistical mechanics previously devised to gain an understanding of degenerate ensembles with residual entropy. With the evolution of nano--fabrication and of experimental protocols it is now possible to characterize the material in real-time, real-space, and to realize virtually any geometry, for direct control over the collective dynamics. This has recently opened a path toward the deliberate design of novel, exotic states, not found in natural materials, and often characterized by topological properties. Without any pretense of exhaustiveness, we will provide an introduction to the material, the early works, and then, by reporting on more recent results, we will proceed to describe the new direction, which includes the design of desired topological states and their implications to kinetics.Comment: 29 pages, 13 figures, 116 references, Book Chapte

    MIDA boronates are hydrolysed fast and slow by two different mechanisms

    Get PDF
    MIDA boronates (N-methylimidodiacetic boronic acid esters) serve as an increasingly general platform for small-molecule construction based on building blocks, largely because of the dramatic and general rate differences with which they are hydrolysed under various basic conditions. Yet the mechanistic underpinnings of these rate differences have remained unclear, which has hindered efforts to address the current limitations of this chemistry. Here we show that there are two distinct mechanisms for this hydrolysis: one is base mediated and the other neutral. The former can proceed more than three orders of magnitude faster than the latter, and involves a rate-limiting attack by a hydroxide at a MIDA carbonyl carbon. The alternative 'neutral' hydrolysis does not require an exogenous acid or base and involves rate-limiting B-N bond cleavage by a small water cluster, (H2O)n. The two mechanisms can operate in parallel, and their relative rates are readily quantified by (18)O incorporation. Whether hydrolysis is 'fast' or 'slow' is dictated by the pH, the water activity and the mass-transfer rates between phases. These findings stand to enable, in a rational way, an even more effective and widespread utilization of MIDA boronates in synthesis

    Quantitative imaging of concentrated suspensions under flow

    Full text link
    We review recent advances in imaging the flow of concentrated suspensions, focussing on the use of confocal microscopy to obtain time-resolved information on the single-particle level in these systems. After motivating the need for quantitative (confocal) imaging in suspension rheology, we briefly describe the particles, sample environments, microscopy tools and analysis algorithms needed to perform this kind of experiments. The second part of the review focusses on microscopic aspects of the flow of concentrated model hard-sphere-like suspensions, and the relation to non-linear rheological phenomena such as yielding, shear localization, wall slip and shear-induced ordering. Both Brownian and non-Brownian systems will be described. We show how quantitative imaging can improve our understanding of the connection between microscopic dynamics and bulk flow.Comment: Review on imaging hard-sphere suspensions, incl summary of methodology. Submitted for special volume 'High Solid Dispersions' ed. M. Cloitre, Vol. xx of 'Advances and Polymer Science' (Springer, Berlin, 2009); 22 pages, 16 fig

    Postural control in 13-year-old soccer players

    Get PDF
    To evaluate the effect of early systematic soccer training on postural control we measured center-of-pressure (COP) variability, range, mean velocity and frequency in bipedal quiet stance with eyes open (EO) and closed (EC) in 44 boys aged 13 (25 boys who practiced soccer for 5–6 years and 19 healthy boys who did not practice sports). The soccer players had better stability, particularly in the medial–lateral plane (M/L); their COP variability and range were lower than in controls in both EO (p < 0.05) and EC (p < 0.0005) condition indicating that the athletes were less dependent on vision than non-athletes. Improved stability of athletes was accompanied by a decrease in COP frequency (p < 0.001 in EO, and p < 0.04 in EC) which accounted for lower regulatory activity of balance system in soccer players. The athletes had lower COP mean velocity than controls (p < 0.0001 in both visual condition), with larger difference in the M/L than A/P plane (p < 0.00001 and p < 0.05, respectively). Postural behavior was more variable within the non-athletes than soccer players, mainly in the EC stances (p < 0.005 for all COP parameters). We conclude that: (1) soccer training described was efficient in improving the M/L postural control in young boys; (2) athletes developed specific postural strategies characterized by decreased COP frequency and lower reliance on vision

    Routine care provided by specialists to children and adolescents in the United States (2002-2006).

    Get PDF
    BACKGROUND: Specialist physicians provide a large share of outpatient health care for children and adolescents in the United States, but little is known about the nature and content of these services in the ambulatory setting. Our objective was to quantify and characterize routine and co-managed pediatric healthcare as provided by specialists in community settings. METHODS: Nationally representative data were obtained from the National Ambulatory Medical Care Survey for the years 2002-2006. We included office based physicians (excluding family physicians, general internists and general pediatricians), and a representative sample of their patients aged 18 or less. Visits were classified into mutually exclusive categories based on the major reason for the visit, previous knowledge of the health problem, and whether the visit was the result of a referral. Primary diagnoses were classified using Expanded Diagnostic Clusters. Physician report of sharing care for the patient with another physician and frequency of reappointments were also collected. RESULTS: Overall, 41.3% out of about 174 million visits were for routine follow up and preventive care of patients already known to the specialist. Psychiatry, immunology and allergy, and dermatology accounted for 54.5% of all routine and preventive care visits. Attention deficit disorder, allergic rhinitis and disorders of the sebaceous glands accounted for about a third of these visits. Overall, 73.2% of all visits resulted in a return appointment with the same physician, in half of all cases as a result of a routine or preventive care visit. CONCLUSION: Ambulatory office-based pediatric care provided by specialists includes a large share of non referred routine and preventive care for common problems for patients already known to the physician. It is likely that many of these services could be managed in primary care settings, lessening demand for specialists and improving coordination of care.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    Combination antiretroviral therapy and the risk of myocardial infarction

    Get PDF

    Gating a single-molecule transistor with individual atoms

    Get PDF
    Transistors, regardless of their size, rely on electrical gates to control the conductance between source and drain contacts. In atomic-scale transistors, this conductance is sensitive to single electrons hopping via individual orbitals1, 2. Single-electron transport in molecular transistors has been previously studied using top-down approaches to gating, such as lithography and break junctions1, 3, 4, 5, 6, 7, 8, 9, 10, 11. But atomically precise control of the gate—which is crucial to transistor action at the smallest size scales—is not possible with these approaches. Here, we used individual charged atoms, manipulated by a scanning tunnelling microscope12, to create the electrical gates for a single-molecule transistor. This degree of control allowed us to tune the molecule into the regime of sequential single-electron tunnelling, albeit with a conductance gap more than one order of magnitude larger than observed previously8, 11, 13, 14. This unexpected behaviour arises from the existence of two different orientational conformations of the molecule, depending on its charge state. Our results show that strong coupling between these charge and conformational degrees of freedom leads to new behaviour beyond the established picture of single-electron transport in atomic-scale transistors
    corecore