980 research outputs found

    In Situ Identification of Plant-Invasive Bacteria with MALDI-TOF Mass Spectrometry

    Get PDF
    Rhizobia form a disparate collection of soil bacteria capable of reducing atmospheric nitrogen in symbiosis with legumes. The study of rhizobial populations in nature involves the collection of large numbers of nodules found on roots or stems of legumes, and the subsequent typing of nodule bacteria. To avoid the time-consuming steps of isolating and cultivating nodule bacteria prior to genotyping, a protocol of strain identification based on the comparison of MALDI-TOF MS spectra was established. In this procedure, plant nodules were considered as natural bioreactors that amplify clonal populations of nitrogen-fixing bacteroids. Following a simple isolation procedure, bacteroids were fingerprinted by analysing biomarker cellular proteins of 3 to 13 kDa using Matrix Assisted Laser Desorption/Ionization Time of Flight (MALDI-TOF) mass spectrometry. In total, bacteroids of more than 1,200 nodules collected from roots of three legumes of the Phaseoleae tribe (cowpea, soybean or siratro) were examined. Plants were inoculated with pure cultures of a slow-growing Bradyrhizobium japonicum strain G49, or either of two closely related and fast-growing Sinorhizobium fredii strains NGR234 and USDA257, or with mixed inoculants. In the fully automatic mode, correct identification of bacteroids was obtained for >97% of the nodules, and reached 100% with a minimal manual input in processing of spectra. These results showed that MALDI-TOF MS is a powerful tool for the identification of intracellular bacteria taken directly from plant tissues

    Linking people, places and products. A guide for promoting quality linked to geographical origin and sustainable geographical indications

    Full text link
    The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views of FAO. The views expressed in the contribution by SINER-GI members are the sole responsibility of the authors and do not necessarily reflect the views of the European Commission. Neither the European Commission nor any person acting on behalf of the Commission is responsible for the potential use of the information contained herein

    Search for CP Violation in the Decay Z -> b (b bar) g

    Full text link
    About three million hadronic decays of the Z collected by ALEPH in the years 1991-1994 are used to search for anomalous CP violation beyond the Standard Model in the decay Z -> b \bar{b} g. The study is performed by analyzing angular correlations between the two quarks and the gluon in three-jet events and by measuring the differential two-jet rate. No signal of CP violation is found. For the combinations of anomalous CP violating couplings, h^b=h^AbgVbh^VbgAb{\hat{h}}_b = {\hat{h}}_{Ab}g_{Vb}-{\hat{h}}_{Vb}g_{Ab} and hb=h^Vb2+h^Ab2h^{\ast}_b = \sqrt{\hat{h}_{Vb}^{2}+\hat{h}_{Ab}^{2}}, limits of \hat{h}_b < 0.59and and h^{\ast}_{b} < 3.02$ are given at 95\% CL.Comment: 8 pages, 1 postscript figure, uses here.sty, epsfig.st

    Invading Basement Membrane Matrix Is Sufficient for MDA-MB-231 Breast Cancer Cells to Develop a Stable In Vivo Metastatic Phenotype

    Get PDF
    1 - ArticleIntroduction: The poor efficacy of various anti-cancer treatments against metastatic cells has focused attention on the role of tumor microenvironment in cancer progression. To understand the contribution of the extracellular matrix (ECM) environment to this phenomenon, we isolated ECM surrogate invading cell populations from MDA-MB-231 breast cancer cells and studied their genotype and malignant phenotype. Methods: We isolated invasive subpopulations (INV) from non invasive populations (REF) using a 2D-Matrigel assay, a surrogate of basal membrane passage. INV and REF populations were investigated by microarray assay and for their capacities to adhere, invade and transmigrate in vitro, and to form metastases in nude mice. Results: REF and INV subpopulations were stable in culture and present different transcriptome profiles. INV cells were characterized by reduced expression of cell adhesion and cell-cell junction genes (44% of down regulated genes) and by a gain in expression of anti-apoptotic and pro-angiogenic gene sets. In line with this observation, in vitro INV cells showed reduced adhesion and increased motility through endothelial monolayers and fibronectin. When injected into the circulation, INV cells induced metastases formation, and reduced injected mice survival by up to 80% as compared to REF cells. In nude mice, INV xenografts grew rapidly inducing vessel formation and displaying resistance to apoptosis. Conclusion: Our findings reveal that the in vitro ECM microenvironment per se was sufficient to select for tumor cells with a stable metastatic phenotype in vivo characterized by loss of adhesion molecules expression and induction of proangiogenic and survival factors

    Inborn errors of OAS-RNase L in SARS-CoV-2-related multisystem inflammatory syndrome in children

    Get PDF
    Funding Information: The Laboratory of Human Genetics of Infectious Diseases is supported by the Howard Hughes Medical Institute, the Rockefeller University, the St. Giles Foundation, the National Institutes of Health (NIH) (R01AI088364 and R21AI160576), the National Center for Advancing Translational Sciences (NCATS), NIH Clinical and Translational Science Award (CTSA) program (UL1TR001866), the Yale Center for Mendelian Genomics and the GSP Coordinating Center funded by the National Human Genome Research Institute (NHGRI) (UM1HG006504 and U24HG008956), the Yale High-Performance Computing Center (S10OD018521), the Fisher Center for Alzheimer's Research Foundation, the Meyer Foundation, the JBP Foundation, the French National Research Agency (ANR) under the "Investments for the Future" program (ANR-10-IAHU-01), the Integrative Biology of Emerging Infectious Diseases Laboratory of Excellence (ANR-10-LABX-62-IBEID), the French Foundation for Medical Research (FRM) (EQU201903007798), the ANR GenMISC (ANR-21-COVR-039), the ANRS-COV05, ANR GENVIR (ANR-20-CE93-003) and ANR AABIFNCOV (ANR-20-CO11-0001) projects, the ANR-RHU program (ANR-21-RHUS-08), the European Union's Horizon 2020 research and innovation program under grant agreement 824110 (EASI-genomics), the HORIZON-HLTH-2021-DISEASE-04 program under grant agreement 01057100 (UNDINE), the ANR-RHU Program ANR-21-RHUS-08 (COVIFERON), the Square Foundation, Grandir - Fonds de solidarité pour l'enfance, the Fondation du Souffle, the SCOR Corporate Foundation for Science, the French Ministry of Higher Education, Research, and Innovation (MESRI-COVID-19), Institut National de la Santé et de la Recherche Médicale (INSERM), and Paris Cité University. We acknowledge support from the National Institute of Allergy and Infectious Diseases (NIAID) of the NIH under award R01AI104887 to R.H.S. and S.R.W. The Laboratory of Human Evolutionary Genetics (Institut Pasteur) is supported by the Institut Pasteur, the Collège de France, the French Government's Investissement d'Avenir program, Laboratoires d'Excellence "Integrative Biology of Emerging Infectious Diseases" (ANR-10-LABX-62-IBEID) and "Milieu Intérieur" (ANR-10-LABX-69-01), the Fondation de France (no. 00106080), the FRM (Equipe FRM DEQ20180339214 team), and the ANR COVID-19-POPCELL (ANR-21-CO14-0003-01). A. Puj. is supported by ACCI20-759 CIBERER, EasiGenomics H2020 Marató TV3 COVID 2021-31-33, the HORIZON-HLTH-2021-ID: 101057100 (UNDINE), the Horizon 2020 program under grant no. 824110 (EasiGenomics grant no. COVID-19/PID12342), and the CERCA Program/Generalitat de Catalunya. The Canarian Health System sequencing hub was funded by the Instituto de Salud Carlos III (COV20-01333 and COV20-01334), the Spanish Ministry of Science and Innovation (RTC-2017-6471-1; AEI/FEDER, UE), Fundación MAPFRE Guanarteme (OA21/131), and Cabildo Insular de Tenerife (CGIEU0000219140 and "Apuestas científicas del ITER para colaborar en la lucha contra la COVID-19"). The CoV-Contact Cohort was funded by the French Ministry of Health and the European Commission (RECOVER project). Our studies are also funded by the Ministry of Health of the Czech Republic Conceptual Development of Research Organization (FNBr, 65269705) and ANID COVID0999 funding in Chile. G. Novelli and A. Novelli are supported by Regione Lazio (Research Group Projects 2020) No. A0375-2020-36663, GecoBiomark. A.M.P., M.L.D., and J.P.-T. are supported by the Inmungen-CoV2 project of CSIC. This work was supported in part by the Intramural Research Program of the NIAID, NIH. The research work of A.M.P, M.L.D., and J.P.-T. was funded by the European Commission-NextGenerationEU (Regulation EU 2020/2094), through CSIC's Global Health Platform (PTI Salud Global). I.M. is a senior clinical investigator at FWO Vlaanderen supported by a VIB GC PID grant, by FWO grants G0B5120N (DADA2) and G0E8420N, and by the Jeffrey Modell Foundation. I.M. holds an ERC-StG MORE2ADA2 grant and is also supported by ERN-RITA. A.Y. is supported by fellowships from the European Academy of Dermatology and Venereology and the Swiss National Science Foundation and by an Early Career Award from the Thrasher Research Fund. Y.-H.C. is supported by an A*STAR International Fellowship (AIF). M.O. was supported by the David Rockefeller Graduate Program, the New York Hideyo Noguchi Memorial Society (HNMS), the Funai Foundation for Information Technology (FFIT), the Honjo International Scholarship Foundation (HISF), and the National Cancer Institute (NCI) F99 Award (F99CA274708). A.A.A. was supported by Ministerio de Ciencia Tecnología e Innovación MINCIENCIAS, Colombia (111584467551/CT 415-2020). D.L. is supported by a fellowship from the FRM for medical residents and fellows. E.H. received funding from the Bank of Montreal Chair of Pediatric Immunology, Foundation of CHU Sainte-Justine, CIHR grants PCC-466901 and MM1-181123, and a Canadian Pediatric Society IMPACT study. Q.P.-H. received funding from the European Union's Horizon 2020 research and innovation program (ATAC, 101003650), the Swedish Research Council, and the Knut and Alice Wallenberg Foundation. Work in the Laboratory of Virology and Infectious Disease was supported by NIH grants P01AI138398-S1, 2U19AI111825, R01AI091707-10S1, and R01AI161444; a George Mason University Fast Grant; the G. Harold and Leila Y. Mathers Charitable Foundation; the Meyer Foundation; and the Bawd Foundation. R.P.L. is on the board of directors of both Roche and the Roche subsidiary Genentech. J.L.P. was supported by a Francois Wallace Monahan Postdoctoral Fellowship at the Rockefeller University and by a European Molecular Biology Organization Long-Term Fellowship (ALTF 380-2018). Publisher Copyright: © 2023 American Association for the Advancement of Science. All rights reserved.Multisystem inflammatory syndrome in children (MIS-C) is a rare and severe condition that follows benign COVID-19. We report autosomal recessive deficiencies of OAS1, OAS2, or RNASEL in five unrelated children with MIS-C. The cytosolic double-stranded RNA (dsRNA)-sensing OAS1 and OAS2 generate 2'-5'-linked oligoadenylates (2-5A) that activate the single-stranded RNA-degrading ribonuclease L (RNase L). Monocytic cell lines and primary myeloid cells with OAS1, OAS2, or RNase L deficiencies produce excessive amounts of inflammatory cytokines upon dsRNA or severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) stimulation. Exogenous 2-5A suppresses cytokine production in OAS1-deficient but not RNase L-deficient cells. Cytokine production in RNase L-deficient cells is impaired by MDA5 or RIG-I deficiency and abolished by mitochondrial antiviral-signaling protein (MAVS) deficiency. Recessive OAS-RNase L deficiencies in these patients unleash the production of SARS-CoV-2-triggered, MAVS-mediated inflammatory cytokines by mononuclear phagocytes, thereby underlying MIS-C.publishersversionpublishe

    Search for R-Parity Violating Decays of Supersymmetric Particles in e+ee^{+}e^{-} Collisions at Centre-of-Mass Energies near 183 GeV

    Get PDF
    Searches for pair-production of supersymmetric particles under the assumption that R-parity is violated via a single dominant LLEˉLL{\bar E}, LQDˉLQ{\bar D} or UˉDˉDˉ{\bar U} {\bar D} {\bar D} coupling are performed using the data collected by the \ALEPH\ collaboration at centre-of-mass energies of 181--184~\gev. The observed candidate events in the data are in agreement with the Standard Model expectations. Upper limits on the production cross-sections and lower limits on the masses of charginos, sleptons, squarks and sneutrinos are de rived

    First measurement of the quark-to-photon fragmentation function

    Get PDF
    corecore