534 research outputs found

    Intelligent human action recognition using an ensemble model of evolving deep networks with swarm-based optimization.

    Get PDF
    Automatic interpretation of human actions from realistic videos attracts increasing research attention owing to its growing demand in real-world deployments such as biometrics, intelligent robotics, and surveillance. In this research, we propose an ensemble model of evolving deep networks comprising Convolutional Neural Networks (CNNs) and bidirectional Long Short-Term Memory (BLSTM) networks for human action recognition. A swarm intelligence (SI)-based algorithm is also proposed for identifying the optimal hyper-parameters of the deep networks. The SI algorithm plays a crucial role for determining the BLSTM network and learning configurations such as the learning and dropout rates and the number of hidden neurons, in order to establish effective deep features that accurately represent the temporal dynamics of human actions. The proposed SI algorithm incorporates hybrid crossover operators implemented by sine, cosine, and tanh functions for multiple elite offspring signal generation, as well as geometric search coefficients extracted from a three-dimensional super-ellipse surface. Moreover, it employs a versatile search process led by the yielded promising offspring solutions to overcome stagnation. Diverse CNN–BLSTM networks with distinctive hyper-parameter settings are devised. An ensemble model is subsequently constructed by aggregating a set of three optimized CNN–BLSTM​ networks based on the average prediction probabilities. Evaluated using several publicly available human action data sets, our evolving ensemble deep networks illustrate statistically significant superiority over those with default and optimal settings identified by other search methods. The proposed SI algorithm also shows great superiority over several other methods for solving diverse high-dimensional unimodal and multimodal optimization functions with artificial landscapes

    The iterative properties of solutions for a singular k-Hessian system

    Get PDF
    In this paper, we focus on the uniqueness and iterative properties of solutions for a singular k-Hessian system involving coupled nonlinear terms with different properties. Unlike the existing work, instead of directly dealing with the system, we use a coupled technique to transfer the Hessian system to an integral equation, and then by introducing an iterative technique, the iterative properties of solution are derived including the uniqueness of solution, iterative sequence, the error estimation and the convergence rate as well as entire asymptotic behaviour

    Systematic associations between germ-line mutations and human cancers

    Get PDF
    YesThe revolution in Big Data has opened the gate for new research challenges in biomedical science. The aim of this study was to investigate whether germ-line gene mutations are a significant factor in 29 major primary human cancers. Using data obtained from multiple biological databases, we identified 424 genes from 8879 cancer mutation records. By integrating these gene mutation records a human cancer map was constructed from which several key results were obtained. These include the observations that missense/nonsense and regulatory mutations might play central role in connecting cancers/genes, and tend to be distributed in all chromosomes. This suggests that, of all mutation classes missense/nonsense and regulatory mutation classes are over-expressed in human genome and so are likely to have a significant impact on human cancer aetiology and pathomechanism. This offers new insights into how the distribution and interconnections of gene mutations influence the development of cancers

    A Novel Adaptive Spectrum Noise Cancellation Approach for Enhancing Heartbeat Rate Monitoring in a Wearable Device

    Get PDF
    This paper presents a novel approach, Adaptive Spectrum Noise Cancellation (ASNC), for motion artifacts removal in Photoplethysmography (PPG) signals measured by an optical biosensor to obtain clean PPG waveforms for heartbeat rate calculation. One challenge faced by this optical sensing method is the inevitable noise induced by movement when the user is in motion, especially when the motion frequency is very close to the target heartbeat rate. The proposed ASNC utilizes the onboard accelerometer and gyroscope sensors to detect and remove the artifacts adaptively, thus obtaining accurate heartbeat rate measurement while in motion. The ASNC algorithm makes use of a commonly accepted spectrum analysis approaches in medical digital signal processing, discrete cosine transform, to carry out frequency domain analysis. Results obtained by the proposed ASNC have been compared to the classic algorithms, the adaptive threshold peak detection and adaptive noise cancellation. The mean (standard deviation) absolute error and mean relative error of heartbeat rate calculated by ASNC is 0.33 (0.57) beats·min-1 and 0.65%, by adaptive threshold peak detection algorithm is 2.29 (2.21) beats·min-1 and 8.38%, by adaptive noise cancellation algorithm is 1.70 (1.50) beats·min-1 and 2.02%. While all algorithms performed well with both simulated PPG data and clean PPG data collected from our Verity device in situations free of motion artifacts, ASNC provided better accuracy when motion artifacts increase, especially when motion frequency is very close to the heartbeat rate

    Explainable statistical learning in public health for policy development: the case of real-world suicide data

    Get PDF
    BackgroundIn recent years, the availability of publicly available data related to public health has significantly increased. These data have substantial potential to develop public health policy; however, this requires meaningful and insightful analysis. Our aim is to demonstrate how data analysis techniques can be used to address the issues of data reduction, prediction and explanation using online available public health data, in order to provide a sound basis for informing public health policy.MethodsObservational suicide prevention data were analysed from an existing online United Kingdom national public health database. Multi-collinearity analysis and principal-component analysis were used to reduce correlated data, followed by regression analyses for prediction and explanation of suicide.ResultsMulti-collinearity analysis was effective in reducing the indicator set of predictors by 30% and principal component analysis further reduced the set by 86%. Regression for prediction identified four significant indicator predictors of suicide behaviour (emergency hospital admissions for intentional self-harm, children leaving care, statutory homelessness and self-reported well-being/low happiness) and two main component predictors (relatedness dysfunction, and behavioural problems and mental illness). Regression for explanation identified significant moderation of a well-being predictor (low happiness) of suicide behaviour by a social factor (living alone), thereby supporting existing theory and providing insight beyond the results of regression for prediction. Two independent predictors capturing relatedness needs in social care service delivery were also identified.ConclusionsWe demonstrate the effectiveness of regression techniques in the analysis of online public health data. Regression analysis for prediction and explanation can both be appropriate for public health data analysis for a better understanding of public health outcomes. It is therefore essential to clarify the aim of the analysis (prediction accuracy or theory development) as a basis for choosing the most appropriate model. We apply these techniques to the analysis of suicide data; however, we argue that the analysis presented in this study should be applied to datasets across public health in order to improve the quality of health policy recommendations

    Herb Target Prediction Based on Representation Learning of Symptom related Heterogeneous Network.

    Get PDF
    Traditional Chinese Medicine (TCM) has received increasing attention as a complementary approach or alternative to modern medicine. However, experimental methods for identifying novel targets of TCM herbs heavily relied on the current available herb-compound-target relationships. In this work, we present an Herb-Target Interaction Network (HTINet) approach, a novel network integration pipeline for herb-target prediction mainly relying on the symptom related associations. HTINet focuses on capturing the low-dimensional feature vectors for both herbs and proteins by network embedding, which incorporate the topological properties of nodes across multi-layered heterogeneous network, and then performs supervised learning based on these low-dimensional feature representations. HTINet obtains performance improvement over a well-established random walk based herb-target prediction method. Furthermore, we have manually validated several predicted herb-target interactions from independent literatures. These results indicate that HTINet can be used to integrate heterogeneous information to predict novel herb-target interactions
    • …
    corecore