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ABSTRACT This paper presents a novel approach, Adaptive Spectrum Noise Cancellation (ASNC), for 
motion artifacts removal in Photoplethysmography (PPG) signals measured by an optical biosensor to obtain 
clean PPG waveforms for heartbeat rate calculation. One challenge faced by this optical sensing method is 
the inevitable noise induced by movement when the user is in motion, especially when the motion frequency 
is very close to the target heartbeat rate. The proposed ASNC utilizes the onboard accelerometer and 
gyroscope sensors to detect and remove the artifacts adaptively, thus obtaining accurate heartbeat rate 
measurement while in motion. The ASNC algorithm makes use of a commonly accepted spectrum analysis 
approaches in medical digital signal processing, discrete cosine transform, to carry out frequency domain 
analysis. Results obtained by the proposed ASNC have been compared to the classic algorithms, the adaptive 
threshold peak detection and adaptive noise cancellation. The mean (standard deviation) absolute error and 
mean relative error of heartbeat rate calculated by ASNC is 0.33 (0.57) beats·min-1 and 0.65%, by adaptive 
threshold peak detection algorithm is 2.29 (2.21) beats·min-1 and 8.38%, by adaptive noise cancellation 
algorithm is 1.70 (1.50) beats·min-1 and 2.02%. While all algorithms performed well with both simulated 
PPG data and clean PPG data collected from our Verity device in situations free of motion artifacts, ASNC 
provided better accuracy when motion artifacts increase, especially when motion frequency is very close to 
the heartbeat rate. 

INDEX TERMS Adaptive Spectrum Noise Cancellation, Heartbeat Rate Measurement, Wearable Device, 
PPG, Motion artifacts 

I. INTRODUCTION 
In aging societies, stroke and cardiovascular diseases [1] 
have become the main causes of disability and death [2]. 
Recent figures shows mortality caused by diseases of the 
heart among older people (≥60 years) constitute up to 70% 
of deaths in the United States [3]. In addition, the aging 
population creates unprecedented challenges for long-term 
care in many countries around the world [4]. Heartbeat Rate 
(HR) is one of the physiological parameters commonly used 
in medical monitoring systems in older people, hence the 
continuous monitoring of heart activities has been deemed as 
a key enabler in tackling this challenge. 

With advances in the development of microprocessors and 
micro-sensors, many conventional medical measurements can 
now be obtained using sophisticated clinical instruments. The 
data from these measurements can be processed in real-time 
using high-speed chips, with the data being transmitted to 
mobile phones or personal computers through low-power 
wireless communication technology [5]. Wearable medical 
devices do not only provide low-load and non-invasive health 
measurement, but also a long term and convenient way to 
continuously monitor elderly people without disturbing their 
life or impacting their normal lifestyle [6].  
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One of the methods used for non-invasive health 
measurement is Photoplethysmography (PPG). This method is 
considered to be the most effective and practical means in 
wearable devices [7] for monitoring the cardiovascular 
activities. PPG signal is often obtained using a biosensor that 
illuminates the skin via a light source and detects the emission 
density reflected back or through body from that light source. 
This method can detect blood volume changes in the 
microvascular tissue based on the change in blood color as the 
pulse wave travels through the tissue [8]. Cui, W. et al. [9] 
showed experimental results that the peak wavelength 
sensitivity to blood pulsations ranges from 510 nm to 590 nm, 
so green light with a wavelength of 525 nm is usually chosen 
for the PPG light source in integrated biosensors. 

The capability to detect subtle changes in heart activities 
requires accurate HR measurement. Due to the indirect 
measurement nature, wearable devices inevitably face 
challenges caused by baseline drift and Motion Artifacts 
(MAs), especially during exercise and under free living 
conditions [10]. Although the classical Adaptive Threshold 
Peak Detection (ATPD) algorithm is capable of resolving 
baseline drift in PPG signal analysis by detection of peak 
positions in the time domain [11], ATPD is extremely 
vulnerable to MAs. Adaptive Noise Cancellation (ANC) has 
the ability to reduced unwanted MAs by introducing multi-
sensor accelerometer and gyroscope signals and it is being 
widely used for cancelling MAs and noise in PPG signals [12]. 
However, the ANC algorithm fails if the MAs have a close 
enough main frequency component to the heartbeat rate in the 
PPG signal. Spectrum Subtraction (SS) has been another 
stream of widely adopted noise cancellation method in PPG 
signals analysis [13-15]. In [14], Fukushima et al.  subtracted 
the spectrum of acceleration data from the measured PPG 
signal to get the clean heartbeat signal. Y. Zhang et al. [15] 
combined the Ensemble Empirical Mode Decomposition 
(EEMD) with SS method to remove undesirable MAs in a 
wrist-type device and track HR changes during subjects’ 
physical activities. Subtraction of spectrum works if the 
amplitude and envelope of frequency spectrum can be 
predefined but it is not suitable for situations where signal 
amplitude and envelope changes dynamically.  

In this paper, adaptive spectrum noise cancellation 
approach is proposed to obtain accurate HR measurement in 
free living condition or during physical exercise. ASNC 
adaptively incorporates the motion artifacts spectrum data 
obtained from a multi-sensor accelerometer and gyroscope to 
remove motion noise contained in PPG signals in frequency 
domain. Simulation and experimental results have shown that 
ASNC performs more robustly than spectrum subtraction 
method and outperforms the ATPD and ANC algorithms 
quantitatively based on the measured HR in mean±standard 
deviation matrix.  

The rest of the paper is organized as following: Section II 
states the background of the PPG foundation and the related 
work about ATPD and ANC algorithms. Section III introduces 

the ASNC algorithm theory and structure. Section IV 
describes the simulation, experiment and comparison of the 
algorithm. Section V concludes the paper with future work. 

II. BACKGROUND 

A. PPG FOUNDATION 
Since PPG was first proposed by Hertzman, it has gained 
widespread use in recent years [16]. The PPG signal carries 
information about the cardiovascular system such as HR, 
oxygen saturation (SpO2), respiration and blood pressure [17]. 
It is often applied to take measurement at the skin surface, such 
as the fingertip, earlobe, forehead and wrist in non-invasive, 
low-cost and portable biosensors [18].  

 
FIGURE 1. PPG signal with heartbeat rate R-R time interval 
 

A typical PPG pulse signal measured by reflective sensor is 
shown in FIGURE 1. The HR, which is the frequency of heart 
contractions measured as the number of beats per minute 
(beats·min-1), is the basic vital sign extracted from PPG and 
related to the safety and death of human beings [19]. HR is 
normally calculated by using the R-R interval.  

The normal resting HR of an adult human ranges from 60-
100 beats·min-1 [3], which is defined in situations when a 
person is awake and calm. For elite athletes, it is common to 
have a resting HR between 36 and 50 beats·min-1. The 
maximum HR (HR#$%) is the highest HR that a person can 
achieve during progressive maximal exercise, and decreases 
with age[20] with an approximation formula 𝐻𝑅#$% =
220 − 𝐴𝑔𝑒. It is often chosen 0.8 Hz – 3.0 Hz representing a 
HR range from 48-180 beats·min-1 as the pass band filter 
range.  

There are other factors affecting the measurement of clean 
PPG signals. Those challenges are the noise introduced by 
respiration, ambient light disturbance from sunlight, electricity 
frequency noise and motion artifacts [21]. FIGURE 2 is a 
sample of PPG raw signal obtained from a wrist wearable 
device, showing the distortions caused by noise and artifacts: 

As shown in FIGURE 2, one can see that the baseline drift 
varies severely and the HR peaks are merged within the MAs 
peaks. The baseline drift (a slowly varying signal in PPG) 
originated from a low frequency disturbance in the PPG signal 
caused by respiration and the autonomic nervous system [22]. 
To overcome the baseline drift, researchers have proposed 
many filtering approaches based on the frequency 
characteristics of PPG signals and noise [23], such as infinite 
impulse response (IIR) filter and finite impulse response (FIR) 
filter. The IIR bandpass filter is easy to design and performs 
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well for detrending the baseline wander and minimizing 
undesirable distortion [24], thus often chosen to preprocess the 
PPG signal.  

 
FIGURE 2. PPG raw signal measured on the wrist by a wearable watch 
in motion. The distortions include noise, motion artifact together with 
the baseline drift. 
 

Researches have also been focused to overcome the MAs 
due to movement of wrist or body that distort the PPG raw 
signal [25]. Kali Vara et al. [26] reviewed and compared five 
common signal processing methods for MAs cancellation, i.e. 
the ANC, Independent Component Analysis (ICA), Singular 
Value Decomposition (SVD), Wavelet Transform (WT) and 
cycle by cycle Fourier Series Analysis (FSA). It was shown 
that ANC has good tolerance to relatively small distortions 
from MAs. Santos Sa et al. [24] presented a solution using 
accelerometer data to remove MAs on a LAVIMO device for 
physical exercise utilizing ANC and achieved a satisfactory 
result. Although ANC is a valuable algorithm for MAs 
reduction, clean PPG signal and MAs share a superimposed 
frequency zone which makes it difficult for the general IIR 
filter, ATPD or ANC to suppress MAs.  

B. ADAPTIVE THRESHOLD PEAK DETECTION 
The ATPD algorithm has played important role for temporal 
signal analysis that depends on peak positions [11][27]. In 
mathematics, a peak is a local maximum point [27] that can be 
identified by  detections of zero-crossings in the differences 
(slope sign change) between a point and its neighbors in the 
time domain. The use of ATPD algorithm on PPG signal was 
reported by H. S. Shin et al. in his work [28].  

The ATPD algorithm deals with local maxima or minima 
detection in waveforms. When the algorithm is used to detect 
the peaks in PPG signal to calculate HR, an adaptive threshold 
needs to be applied to differentiate good (valid) or bad 
(invalid) peaks that should contribute to count the number of 
actual heartbeats. With the number of valid heartbeat peaks in 
a given duration of time, HR can be calculated by (1): 

𝐻𝑅 = 60×𝑁23$45/∆𝑡   (1) 

where 𝑁23$45 is the number of valid peaks, and ∆𝑡 is the time 
interval in seconds between the first peak and the last peak. 

 
FIGURE 3. The result by adaptive threshold peak detection for filtered 
PPG signals in HR measurement.  
 

As shown in the FIGURE 3, ATPD algorithm performs well 
in situations with baseline drift by elimination of the smaller 
peaks based on the amplitude and time interval from the local 
maxima. However, when the PPG signal is mixed with strong 
MAs resulting in significant baseline increment or decrement, 
the adaptive threshold method will fail in correctly picking up 
the peaks, e.g. the peaks at about 11 and 13 s are missed due 
to significant baseline decrement. 

C. ADAPTIVE NOISE CANCELLATION 
ANC is a time domain approach to estimate clean signal 
distorted by additive noise or interference [29]. The ANC 
algorithm is widely used to remove noise in biological signals, 
especially PPG. The basic idea of the ANC algorithm is to 
suppress the noise and MAs in the distorted PPG signal 
through an adaptive filter. The method uses a primary input 
containing the expected signal and a reference input 
containing noise highly correlated with the primary signal in 
some unknown way [30]. The raw PPG signals measured by 
optical biosensor is a mixture of primary and reference input 
containing heartbeat and MAs; The data obtained by 
accelerometer and/or gyroscope [24] can be used as reference 
input to estimate MAs. As a result, MAs as the reference signal 
are adaptively subtracted from the raw PPG signal to reveal 
the primary input, i.e. the clean PPG signal. 

 
FIGURE 4. The block diagram of the ANC algorithm.	𝒔𝟎 is the clean PPG 
signal and primary input of the system, 𝒔 is the raw PPG signal 
measured by a PPG sensor, 𝐦𝟎 is the MAs and reference input of the 
system, 𝒎 is the estimation of the MAs calculated by the adaptive filter. 
The output of ANC is 𝒚 which is the estimated data that best fit to clean 
PPG signal. 
 

As shown in FIGURE 4, the raw PPG signal is calculated 
by the following equation: 

𝑠 = 𝛼(𝑠B + 𝑚B)	 	 (2)	
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where α  is the gain factor between the PPG signal and 
biosensor output. For simplicity without losing generality, the 
multiplication factor 𝛼  is assumed to be equal to 1 in the 
digital signal processing computation. 

Given = 𝑠 − 𝑚  , 𝛼 = 1  and taking expectations of both 
sides of (2), one has: 

𝐸 𝑦J = 	𝐸[ 𝑠B + 𝑚B − 𝑚)J 	

= 𝐸 𝑠BJ + 2𝐸[𝑠B 𝑚B − 𝑚 ] + 𝐸[ 𝑚B − 𝑚)J 	 (3)	

The signal energy E sBJ  represents the mean of the 
squared amplitude [31]. The raw PPG signal sB is independent 
from the MAs disturbance mB and estimation m resulting in 
2𝐸[𝑠B 𝑚B − 𝑚 ] approaches to 0. In the meantime, sB has no 
input to the adaptive filter, thus the adjustment of the adaptive 
filter to minimize E yJ  will not affect the signal energy 
𝐸 𝑠BJ . Hence, the minimum output energy for (3) is: 

𝑚𝑖𝑛	𝐸 𝑦J = 	𝐸 𝑠BJ + 𝑚𝑖𝑛	𝐸[ 𝑚B − 𝑚)J 	 (4)	

Minimizing 𝐸 𝑦J  corresponds to minimizing 𝐸[ 𝑚B −
𝑚)J  and MAs estimation will approach to 𝑚B . In other 
words, y is the least-squares estimation of sB. 

Based on the above correlation analysis, a dynamic adaptive 
model predicting the distortion of the PPG signal in response 
to acceleration and rotation can be built. The adaptive filter 
model can be implemented as a Least Mean Square (LMS) 
filter and Recursive Least Square (RLS) filter. In practice, the 
adaptive filter is often based on a FIR-type LMS filter with a 
specific time window. The coefficients of the adaptive filter 
are then calculated in real-time to minimize the output energy 
thus obtaining the MAs estimation.   

III. ADAPTIVE SPECTRUM NOISE CANCELLATION 

A. OVERALL STRUCTURE 
In this section, the ASNC approach for suppression of MAs 
from distorted PPG signals in the frequency domain is 
presented to improve the accuracy of HR measurement. The 
proposed ASNC algorithm is composed of three steps: (1) 
Raw data collection and processing; (2) time domain to 
frequency domain conversion and (3) adaptive MAs removal 
and HR calculation. The flowchart is shown in Fig. 5.  

Step 1: Raw data collection and preprocessing. The onboard 
biosensor samples the raw PPG and the integrated 
accelerometer and gyroscope tracks the motion acceleration 
and angular velocity data. Both data sets are sent to mobile 
devices over low energy Bluetooth ready for further analysis. 
On mobile devices, PPG raw data is preprocessed by a band-
pass IIR filter to eliminate the low frequency baseline shift and 
most of the high frequency noise whist the motion data is pre 

                                                
1 Although moving bodies will affect one’s HR and cause the change of 

clean PPG signal, this variance can be compensated by the rapid updated 
measurements. There is a mechanism to avoid PPG signal saturation, hence 
the measurement of PPG signal can be treated as a linear process. Wrist 

filtered by a low-pass IIR filter. The filtered motion data is 
referred as the MAs Estimation (MAE) in the paper. 

 
FIGURE 5. Flowchart of the Adaptive Spectrum Noise Cancellation 
(ASNC) algorithm. 
 

Step 2: Time domain to frequency domain conversion. All 
the pre-processed data are firstly segmented by sliding 
windows whose size is chosen to be approximately twice that 
of the maximum HR for adequate frequency resolution. Then 
the segmented data are fed into Discrete Cosine Transform 
(DCT) process to be converted into frequency domain. 
Finally, the envelope detection smooths out the outline of the 
signal envelop by cubic spline to compute the contours of PPG 
and MAs spectrum in the frequency domain.  

Step 3: Adaptive MAs removal and HR calculation. In this 
step, the MAs spectral contour is adapted to an equivalent 
amplitude and phase to the one contained in the PPG signal so 
that by subtracting the MAs contour envelop from the PPG 
spectral envelope in the frequency domain the clean PPG can 
be revealed. Finally, a main-harmonic frequency peak 
decision tree is used to pick up the appropriate peak in the 
clean PPG within the HR frequency zone to calculate the HR.  

B. ADAPTATION PROCESS 
Assumption1: The clean PPG signal is independent from MAs 
disturbance and MAs disturbance is digitally overlapped with 
the clean PPG signal through a linear physical process [32]. 

motion can be measured by accelerometers and gyroscopes which are 
related to MAs in linear fashion [40]. There are other kinds of noise as the 
secondary disturbance in the algorithm. 
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The noises introduced by respiration, environmental light and 
electricity fluctuations can be filtered by appropriately 
designed IIR band filter. 

FIGURE 6 shows the proposed ASNC algorithm block 
diagram.  

 
FIGURE 6. Adaptive spectrum noise cancellation algorithm block 
diagram. The lowercase letters represent the continuous-time domain 
signal and the capital letters represent the corresponding signal in the 
frequency domain.   
 

The objective of the ASNC algorithm is to find an optimal 
system output 𝑦 that can best fit to the clean PPG signal 𝑠B. 
The raw PPG data s compromises of the clean PPG signal 𝑠B, 
MAD 𝑤 and noise u: 

𝑠 = 𝛼(𝑠B + 𝑤 + 𝑢)	 			 								(5)	

where 𝑢 is the noise from environmental light disturbance and 
baseline shift. 

According to our Assumption, the MAE 𝑚  read by 
accelerometer and gyroscope can be linearly represented by 
motion artifact 𝑚B as below: 

𝑚 = 𝛽𝑚B	 	 	 (6)	

where 𝛽 is a constant coefficient.  
The MAD 𝑤  is the motion interference contained in the 

PPG biosensor readings through a physical process. 𝑤 can be 
linearly represented as following: 

𝑤 = 𝛾𝑚B	 	 	 (7)	

where 𝛾 is a constant weight factor. 
The time to frequency domain transformation is performed 

by the commonly used approach Fourier transform [33] shown 
below:  

𝑋 ≝ 𝑋 𝜉 = ℱ[𝑥 𝑡 ] = 𝑥(𝑡)𝑒`Jabcd𝑑𝑡f
`f 	 (8)	

where 𝑥(𝑡) is the time domain signal; 𝑖 is the imaginary unit; 
the independent variable	𝑡  represents time (in seconds), the 
transform variable 𝜉  represents frequency (in hertz). The 
functions 𝑥(𝑡)  and 𝑋 𝜉  are often referred as a Fourier 
transform pair.  

Taking the Fourier transform on (5) gives: 

𝑆 = 𝛼(𝑆B + 𝑊 + 𝑈)	 	 							(9)	

where 𝑆, 𝑆B,W, 𝑈 represent the corresponding signal in 
spectrum 𝑠, 𝑠B, w, 𝑢 respectively.  

Substitute (9) with 𝑌 = 𝑆 −𝑊 and given the noise 𝑈 being 
eliminated by band pass filter, one obtains: 

𝑌 = 𝛼(𝑆B + 𝑊) −𝑊			 	 					(10)	

Square both sides of (10): 

𝑌J = 𝛼 𝑆B + 𝑊 −𝑊 J 

= 𝛼𝑆B J + 2𝛼𝑆B 𝛼𝑊 −𝑊 + 𝛼𝑊 −𝑊 J				(11)	

Taking expectations of both sides gives (12). As 𝑆B is the 
clean PPG signal spectrogram that is uncorrelated with the 
MAs spectrogram, expectation of 2𝛼𝑆B 𝛼𝑊 −𝑊  
approaches to 0, hence it can be eliminated: 

𝐸[𝑌J] = 𝐸[ 𝛼𝑆B J] + 𝐸[ 𝛼𝑊 −𝑊 J]
+ 𝐸[2𝛼𝑆B 𝛼𝑊 −𝑊 ]	

𝐸[𝑌J] ≈ 𝐸[ 𝛼𝑆B J] + 𝐸[ 𝛼𝑊 −𝑊 J]	 						(12)	

Similar to (4), the objective of minimizing the error between 
MAE and MAD is equivalent to minimizing the output 
energy	𝐸 𝑌J : 

𝑚𝑖𝑛𝐸[𝑌J] ≡ 𝐸[ 𝛼𝑆B J] + 𝑚𝑖𝑛𝐸[ 𝛼𝑊 −𝑊 J]	 (13)	

When 𝐸[𝑌J]  is minimized by the adaptive filter, the output 
𝑊 is then a best least squares estimation of α𝑊. Furthermore, 
from (10), there is 𝑌 − 𝛼𝑆B = 𝛼𝑊 −𝑊 , that is when 
E[ 𝛼𝑊 −𝑊 J]  is minimized, E[ 𝑌 − 𝛼𝑆B J]  is also 
minimized. 

Let ℎ(𝑡) be the adaptive filter: 

𝑤 = ℎ ∗ 𝑚	 	 	 (14)	

With the convolution theorem property of the FT: 
𝑋 𝜉 𝑌 𝜉 = ℱ 𝑥 𝑡 ∗ 𝑦 𝑡 , the Fourier transform form of 
(14) can be expressed as: 

𝑊 = 𝐻𝑀 = 𝛽𝐻𝑀B	 	 				(15)	

Similarly, (7) can be turned into 𝑊 = 𝛾𝑀B, thus: 

𝛼𝑊 −𝑊 = 𝛼𝛾𝑀B − 𝛽𝐻𝑀B = (𝛼𝛾 − 𝛽𝐻)𝑀B	 (16)	

When equation E[ α𝑊 −𝑊 J] = 0 is satisfied, the output 
energy E[𝑌J] = 𝐸[ 𝛼𝑆B J]	 reaches its minimum. The 
following key formulas can be concluded: 

𝛼𝛾 − 𝐻𝛽 = 0	 	 	 (17)	

𝐻 = uv
w
	 	 											(18)	

Equation (18) indicates that 𝐻 can be evaluated by constant 
variables, and the adaptive filter can lead to satisfy α𝑊 ≈ 𝑊 
and 𝑌 ≈ α𝑆B. As a result, the output will present the noise free 
clean signal. 

C. MAS ESTIMATION 
To evaluate the MAs signal which distorts the clean PPG 
signal, both the accelerometer and gyroscope are used in the 
device. 
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Micro tri-axial accelerometer is used to detect magnitude 
and direction of the three dimensional accelerations. It 
measures all forces that being applied on the sensor including 
the gravity vector. It works reliably over long time period. 
Every small force acting on the sensor will have effects on the 
measurements, hence the following formula is used to fuse the 
amplitudes of all acceleration components: 

𝑎 = 𝑎%J + 𝑎yJ + 𝑎zJ	 	 			(19)	

where 𝑎% , 𝑎y , 𝑎z  are the components of the three axes, 𝑎 is 
the amplitude of acceleration.  

A gyroscope is a spinning wheel or disc where the axis of 
rotation is free. The orientation of the spinning axis is 
unaffected by tilting when the wheel is spinning due to the 
conservation of angular momentum. Although the gyroscope 
can obtain accurate angular momentum that is not susceptible 
to external forces, the angular momentum calculated over time 
by a gyroscope tends to drift. So, the gyroscope data is reliable 
only over the short term. The amplitude of gyroscope sensor 
readings is fused as following: 

𝑔 = 𝑔%J + 𝑔yJ + 𝑔zJ	 	 			(20)	

where 𝑔%, 𝑔y, 𝑔z are the components of three axels, 𝑔 is the 
amplitude of angular momentum.  

By combing accelerometer and gyroscope, the MAs can be 
estimated as following: 

𝑚 = ℓ ⋅ 𝑎 + (1 − ℓ) ⋅ 𝑔				(0 ≤ ℓ ≤ 1)		(21)	

where 𝑚 is the estimation of MAs, i.e. MAD, ℓ is a weight 
factor to fuse accelerometer and gyroscope measurements.  

D. ENVELOPE DETECTION 
In digital signal processing, the transformed frequency 
spectrum from time data series by spectral analysis process 
using component frequencies identification is discrete and 
unsmooth. It is common practice to use envelope detector 
which connects all the peaks in the signal to smooth the 
contour of the discrete spectrum so that we can subtract two 
spectrums directly, e.g. the raw PPG and the noise contained 
in PPG signal. 

There are two common methods of envelope detection, 
peak detection with interpolation [34] and Hilbert transform 
[35]. The first envelope detection method involves peaks 
detection by down sampled signal to reduce the sampling 
frequency, then intermediate values interpolation by a linear 
or spline method to smooth the signal. Then the signal is 
processed through a minimum-phase, lowpass filter to 
eliminate the high frequency energy to obtain the envelop.  

The Hilbert transform envelope detection method involves 
creation of the analytic signal from the input using the Hilbert 
transform. An analytic signal is a complex signal, where the 
real part is the original signal and the imaginary part is the 
Hilbert transform of the original signal. Mathematically the 
envelope 𝑒 𝑡  of a signal 𝑥 𝑡  is defined as the magnitude of 
the analytic signal as shown in the following equation: 

𝑒 𝑡 = 𝑥J 𝑡 + 𝑥J(𝑡)		 	 (22)	

where 𝑥(𝑡)  is the Hilbert transform of 𝑥 𝑡 . However, the 
envelope amplitude does not always match the actual signal 
and is computational power intensive. Hence, the peak 
detection with interpolation is selected in our system. 

E. SPECTRUM ANALYSIS 
The DFT is a common approach used to transform time series 
digital signals to the frequency domain [36]. DFT is defined 
as the following equation: 

𝑋~�� 𝑘 ≝ ℱ 𝑥 𝑛 = 𝑥 𝑛 𝑒`Jab4� ��`�
��B 								(23)	

where 𝑖 is the imaginary unit; 𝑥 0 , 𝑥 1 , 𝑥 2 ,…, 𝑥 𝑁 − 1  
are the 𝑁  signal samples. These samples are further 
transformed into 𝑁  periodic complex numbers: 	𝑋~�� 0 , 
𝑋~�� 2 ,…, 𝑋~�� 𝑁 − 1 . The customary domain 𝑘 =
0,1, … , 𝑁 − 1 is the frequency index. 

In DFT, each	𝑋 k  is a complex number that encodes both 
amplitude and phase. Since PPG and MAs signals are real 
valued data while DFT represent the transformed result in 
complex value form, half of the result in the frequency domain 
are redundant due to conjugate symmetry feature of the 
transformation.  

The DCT converts a finite discrete sequence of data to a 
sum of real valued cosine function and is more suitable for 
handling the frequency domain data directly [37]. DCT also 
has ideal frequency filter characteristics [21] where 
frequencies are more concentrated on the major frequency 
components. Various forms of DCT definitions are designed 
for different applications. Below, the most commonly used 
DCT in signal processing is given: 

𝑋~�� 𝑘 = 𝑥(𝑛)𝑐𝑜𝑠	[a
�
𝑛 + �

J
𝑘]�`�

��B 	 				(24)	

where 𝑋~�� is the DCT frequency domain data. The DFT is 
normally implemented by the Fast Fourier Transform (FFT) 
algorithm which has a complexity of 𝑂(𝑛𝑙𝑜𝑔𝑛). DCT is a real 
number transform with better computational efficiency, 
whereas the Fast Discrete Cosine Transform (FDCT) 
algorithm takes only 1/6 as many steps as the FFT [38]. 

FIGURE 7 shows the comparison result of DFT and DCT 
frequency analysis. 

Due to the dynamics of the MAs and individual differences 
in the PPG, the transformed amplitudes of PPG and MAs 
frequencies are often on different scales. The objective of the 
ASNC algorithm is to adjust the adaptive filter ℎ(𝑡)  to 
adaptively subtract the MAs signal from the distorted PPG 
signal. 

Let S  be PPG spectrum envelope, M  be MAs spectrum 
envelope. What we need to find out is a suitable gain 𝐻 that 
matches the spectrum amplitude of PPG and MAs in order to 
remove the M contained in S . According to (13), this can be 
achieved by minimizing E[𝑌J], and we can calculate 𝑌 by the 
smoothed spectrum envelope data as below: 
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𝑚𝑖𝑛		𝐸[𝑌J] ≡ 𝑚𝑖𝑛	 𝐸(𝑆 − 𝑀𝐻)J																	(25)	

 
FIGURE 7. The comparison of DFT and DCT analysis. The spectrum of 
the DFT is symmetrical around the center frequency point, while the 
spectrum of the DCT only has a half of the frequency zone, i.e. the DCT 
is more efficient for spectrum analysis. 
 

The objective is to minimize (S − M𝐻)J . Inverting the 
matrix of the normal equations, the algebraic solution of the 
normal equations can be written as: 

𝐻 = 𝑀�𝑆	 	 	 (26)	

where M� is the Moore–Penrose pseudoinverse of M and H is 
proper adaptive least mean squares filter. 

The adaptive filter simulates the desired filter by searching 
the filter coefficients that minimize the least mean squared 
error signal (difference between the desired and the actual 
signal) in the frequency spectrum. It is a stochastic gradient 
descent method that the filter is only adapted based on the 
error. 

IV. SIMULATION AND EXPERIMENT 
In this section, we verify the efficacy of ASNC by applying 
it in both simulated and real life scenarios for HR 
measurement.  

A. ADAPTIVE SPECTRUM NOISE CANCELLATION ON 
VERITY 

 
FIGURE 8. Verity wrist-wearable watch. 
 
The experimental platform is the Verity watch [1] shown in 
Fig. 8. Verity is a wrist-wearable device intended for 
continuous monitoring of users’ HR. The optical biosensor on 
the back measures the PPG signal while the onboard tri-axial 
accelerometer and gyroscope sensors measure the MAs. The 
embedded 560 nm green light has been used for improved 
environmental noise tolerance compared to red light source. 
As the MAs introduced to the PPG have the same effects on 

the accelerometer and gyroscope sensors, the motions 
extracted can be used to compensate the MAs by using ASNC. 

Data measured by Verity is transmitted to mobile devices 
using the Bluetooth low energy wireless protocol and 
segmented into chunks of 60s. The amplitude is normalized to 
1.0. The sampling rate is 100 Hz for both PPG and MAs. 

 
FIGURE 9. PPG and MAs signal envelope in DCT analysis, the PPG and 
MAs data are sampled at 100 Hz for 20s when the wrist is kept in still. 
 

Fig. 9 shows a snapshot of both PPG signal and MAs taken 
by Verity when the hand is still. As seen in the figure, their 
amplitudes are in different order of scales, therefore the MAs 
contained in the PPG signal cannot be subtracted directly. 
However, the ANC algorithm will still try to amplify the noise 
signal to match the amplitude of the PPG signal causing an 
invalid extraction of the real PPG signal. 

 
FIGURE 10. The result of ASNC with white noise artifacts. 
 



	

VOLUME XX, 2017 9 

By applying ASNC, the resultant spectrum are shown in 
FIGURE 10. The shape of MAs spectrum is adjusted by the 
adaptive algorithm to the same scale of noise in PPG, and can 
be eliminated properly via subtraction. The ASNC algorithm 
shows robust property based on the ‘long tail’ from 1.5 Hz to 
4 Hz, and the HR frequency is the highest peak in the PPG 
spectrum. 

This shows the robust performance of ASNC is irrelevant 
of the existence of noise compared to ANC.  

To address the capability of ASNC dealing with challenges 
where MAs and HR have close enough frequency, FIGURE 
11 data has been used. Both MAs and HR have frequency 
peaks around 1.3 Hz. 

 
FIGURE 11. PPG and MAs signal envelope in DCT analysis. The peak 
frequency of PPG and motion artifacts are very close. 

 
FIGURE 12. The result of ASNC with close frequency peak between PPG 
and motion artifacts. 
 

In Fig. 12, the MAs spectrum is adjusted through adaptive 
filtering and matched to its counterpart in the PPG spectrum. 

Fig.12 shows the MAs has been removed from the raw PPG 
signal successfully and revealed the correct real PPG peaks. 

As a real time HR measurement experiment. The HR was 
measured simultaneously by a CE marked medical device, 
called EIMO, designed and developed by iMonSys ltd. 
[39,41].  

 
FIGURE 13. Raw and bandpass filtered PPG signal measured by Verity. 
 

Fig. 13 shows a frame of raw PPG signal sampled from 
Verity. Fig. 14 shows the PPG and MAs signal envelope in 
frequency domain. There are two peak frequencies in the PPG 
spectrum and both are within the range of human HR. The 
lower figure shows the details of MAs in the frequency 
domain, with a peak close to HR and some high frequency 
noise. 

 
FIGURE 14. The envelope of PPG and MAs frequency spectrum. 
 

ASNC
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Fig. 15 shows the result after applying the adaptive filter. 
By the removal of MAs from the PPG signal, the second 
highest peak was eliminated and the HR can be correctly 
identified and calculated.  

From Fig. 13, we can observe that the distortion is much 
more pronounced than the PPG signal without motion artifacts 
in the time domain. In Fig. 15, the motion peak is around 1.5 
Hz and at the same time there are also 1.5 Hz peak in the PPG 
signal. Following application of the ASNC algorithm, the HR 
peak is revealed as 1.2 Hz. Measured by the EIMO device, the 
heart rate is 72 beats·min-1 which means 1.2 Hz is the 
frequency component for actual HR. 

 
FIGURE 15. PPG raw data measured in wrist with motion artifact in time 
domain and displayed after discrete Fourier Transform in frequency 
domain. 
 

B. COMPARISON OF ATPD, ANC AND ASNC 
To validate our proposed ASNC algorithm’s performance 
against ATPD and ANC algorithms systematically, 
simulation models of PPG, MAs and baseline wander have 
been proposed for distorted PPG signal generation[21]. By 
altering the parameters of the models, we can examine 
different combinations of HR and noises in a controlled 
manner.  
1) SIGNAL MODELS 
The major frequency component of a PPG signal is around 
0.8-3.0 Hz. The low frequency wander component generally 
reflects the respiration (0.15–0.4 Hz) and baseline drift (0-0.1 
Hz), and the MAs frequency is possible from 0 to signal 
sampling rates. The PPG signal is periodic and can be 
represented with the model below: 

𝑠B = 𝐴B𝑓(𝑡B, 𝑓B, 𝐻𝑅$)	 	 				(27)	

where 𝑓 is the model of the simulated clean PPG signal, 𝐴� is 
the amplitude and assume it is 1.0, 𝑡� is time duration set to 20 
s, 𝑓B is sample frequency set to 100 Hz, 𝐻𝑅$ is the actual HR. 

The low frequency component of PPG contains the 
respiration effect which is measured when a person is at rest 
and involves counting the number of breaths for one minute. 
The respiration is removed by low-pass filter from the 
standard PPG signal, so we do not need to add extra signal to 
the PPG. Hence only baseline drift u� is simulated and defined 
as below: 

𝑢� = 	 𝐴�𝑐𝑜𝑠	(2𝜋𝑓�B.�
���B 𝑡 + 𝜑�)  (28)	

where 𝐴�  is the random amplitude of every frequency 
component from 0 to 1, 𝑓�  is the series of frequency points 
from 0 to 0.1 Hz which is the main baseline shift frequency 
component, 𝑡 is the time series, 𝜑� is the random phase shift 
from 0 to 𝜋 rad. 

MAs are the dominant influential noise in PPG signals in 
the moving state. Therefore, the mathematical expression of 
MAs effect is designed by a frequency center-moving digital 
signal, and cannot be easily removed by band pass filter. The 
MAs simulation model is defined as the following equation: 

𝑚5 = 𝐴5𝑐𝑜𝑠 2𝜋𝑓5𝑡 + 𝜑5 	 	 (29)	

where m5  is the noise of MAs simulation, 𝑓5  is the MAs 
frequency point which ranges from 0.5 Hz-10 Hz overlapping 
with the PPG signal. 𝐴5 is the random amplitude from 0 to 1.0 
which is the same amplitude as the PPG signal. The phase 
delay 𝜑5 is random from 0 to 𝜋 rad. 

The raw PPG signal is then the addition of all three signals: 

𝑠 = 𝑠B + 𝑚5 + 𝑢�	 	 	 (30)	

Fig. 16 shows a resultant PPG signal with a duration of 20 
s sampled at 100 Hz. The HR randomly changes at every step. 
Variable 𝑠 is the simulated signal which is the input of the 
three algorithms. 

 
FIGURE 16. Simulated PPG signal with baseline wander and MAs. 
 
2) EVALUATION 
Each simulated PPG signal is fed to all ATPD, ANC and 
ASNC algorithms for processing to obtain HR. Three criteria, 
the absolute error, relative error and standard deviation are 
used in our comparison. These criteria define a mathematical 
method for deriving the accuracy and uncertainty in the 
measurement, i.e. the difference between the calculated HR 
and the given HR used to generate the simulated PPG signal. 
The absolute error of HR shows the actual scale of measured 
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error off the actual HR value, and the relative error shows how 
large the error is in relation to the true value.  

The mean of the absolute error 𝐸$�5���c3 is defined as: 

𝐸$�5���c3 =
�
�

𝐻𝑅#(𝑖) − 𝐻𝑅$(𝑖)�
b�� 	 						(31)	

where the relative error is the ratio of the absolute error of the 
measured HR to the actual HR. The relative error expresses 
the ‘relative size of the error’ of the measurement in relation 
to the measurement itself.  

The mean of the relative error E���� ¡¢� is calculated by the 
following equation: 

𝐸£3�$cb¤3 =
�
�

¥¦§(b)`¥¦¨(b)
¥¦¨(b)

×100%�
b�� 	 								(32)	

The standard deviation (SD) denoted as σ is a measure to 
quantify the dispersion or variation of a set of data values 
around the mean: 

𝜎 = �
�

(𝐻𝑅#(𝑖) − 𝐻𝑅$(𝑖))J�
b��      (33)	

In the experiment, the actual HR in the simulate PPG signal 
is simulated from 48 to 180 beats·min-1, with each sample 
having a duration of 20 s. FIGURE 17 shows the results of the 
calculated 𝐻𝑅# by ATPD, ANC and ASNC algorithms with 
a mean of 10 attempts. One can see that the measured HR 
using the ASNC approach is much closer to the actual HR than 
the ATPD and ANC methods.  

 
FIGURE 17. Comparison of the three algorithms in HR measurement 
against the simulated PPG signals with baseline shift and Mas. The HR 
ranges from 48 to 180 beats· min-1. 
 

Table I shows the results of 𝐸$�5���c3 and the mean relative 
error 𝐸£3�$cb¤3 . The mean (SD) absolute error 𝐸$�5���c3  of 
0.32 (0.57) beats·min-1 for the proposed ASNC algorithm 
shows a significant improvement compared to ATPD and 
ANC methods. 

 
TABLE I  

THE ABSOLUTE ERROR, RELATIVE ERROR AND STANDARD DEVIATION OF 
THE ATPD, ANC AND ASNC ALGORITHMS WITH 10 DIFFERENT 

SIMULATION DATASETS 

Case 
ATPD ANC ASNC 

𝑬𝒂 𝑬𝒓 𝛔 𝑬𝒂 𝑬𝒓 𝛔 𝑬𝒂 𝑬𝒓 𝛔 
1 3.1 8.5% 2.1 1.2 2.3% 1.4 0.1 0.5% 0.5 
2 1.8 8.0% 2.2 1.8 2.1% 1.6 0.2 0.4% 0.5 
3 2.8 9.2% 2.3 1.6 2.3% 1.5 0.0 0.5% 0.6 
4 3.1 9.8% 2.3 1.5 2.1% 1.4 0.3 0.3% 0.5 
5 2.3 8.3% 2.2 2.0 1.7% 1.4 0.2 0.6% 0.6 
6 0.7 6.5% 2.1 2.2 1.7% 1.5 0.0 0.8% 0.6 
7 3.1 9.1% 2.3 1.5 2.3% 1.5 1.1 2.1% 0.7 
8 1.6 7.5% 2.1 2.0 1.9% 1.5 0.3 0.9% 0.5 
9 2.8 9.5% 2.3 1.3 2.7% 1.6 1.0 0.0% 0.7 

10 1.6 7.4% 2.2 2.8 1.1% 1.6 0.0 0.4% 0.5 
 

The following Table II shows the mean (SD) of the result: 
 

TABLE II  
THE MEAN ABSOLUTE ERROR, RELATIVE ERROR AND STANDARD 

DEVIATION OF THE ATPD, ANC AND ASNC ALGORITHM 

Mean/Method ATPD ANC ASNC 

𝑬𝒂𝒃𝒔𝒐𝒍𝒖𝒕𝒆 2.29 1.79 0.32 
𝑬𝒓𝒆𝒍𝒂𝒕𝒊𝒗𝒆 8.38% 2.02% 0.65% 

𝛔 2.21 1.50 0.57 

All three algorithms work well without the presence of 
MAs, however the proposed new ASNC approach has shown 
a significant improvement for reducing baseline shift and MAs 
cancellation with more accurate HR measurements. 

V. CONCLUSION 
In this paper, the ASNC algorithm was proposed to remove 
MAs noise from raw PPG signals to obtain accurate HR when 
a human is in motion. The ASNC method consists of three key 
steps: obtain and preprocess raw PPG data; transform PPG and 
MAs signal from time domain to the frequency domain; 
adaptive spectrum subtraction to obtain the cleaned PPG 
spectrum profile for HR calculation. 

We tested the ASNC algorithm on our wrist wearable 
platform Verity. This algorithm is able to remove MAs and 
calculate HR while in motion. In the ASNC algorithm, DCT 
shows more advantages than DFT in real number computing 
on magnitude response and phase distortion respects.  

The ASNC algorithm has also been compared with ATPD 
and ANC using simulated PPG signals with motion. The 
ASNC achieves the lowest mean (SD) absolute error of 0.33 
(0.57) beats·min-1 and mean relative error of 0.65%, compared 
to those obtained using ATPD (mean absolute error 2.29 
(2.21) beats·min-1; mean relative error 8.38%) and ANC (mean 
absolute error 1.70 (1.50) beats·min-1; mean relative error 
2.02%). The ASNC therefore shows a significant performance 
improvement compared with ATPD and ANC.  

Despite the efficacy of DCT in the ASNC algorithm, 
compared with the time domain algorithm ATPD, the ASNC 
algorithm needs more memory and computational resource 
which currently hinders the adoption of the algorithm process 
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on the Verity watch directly due to its limited hardware 
resources. The combination of ASNC with ATPD and ANC 
may be a direction for future research. 
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