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Abstract. In this paper, we focus on the uniqueness and iterative properties of solutions for
a singular k-Hessian system involving coupled nonlinear terms with different properties. Unlike the
existing work, instead of directly dealing with the system, we use a coupled technique to transfer the
Hessian system to an integral equation, and then by introducing an iterative technique, the iterative
properties of solution are derived including the uniqueness of solution, iterative sequence, the error
estimation and the convergence rate as well as entire asymptotic behaviour.
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1 Introduction

In this paper, we shall establish some new results on the uniqueness and iterative proper-
ties of radial solutions for the following singular coupled k-Hessian system:

(−1)kS
1/k
k

(
µ
(
D2u

))
= f1

(
|x|, v

)
in Ω ⊂ RN (k < N < 2k),

(−1)kS
1/k
k

(
µ
(
D2v

))
= f2

(
|x|, u

)
in Ω ⊂ RN (k < N < 2k),

u = v = 0 on ∂Ω,

(1)

whereΩ is a unit ball, and the nonlinear terms in the system have the opposite monotonic-
ity, that is, f1 ∈ C((0, 1) × [0,+∞), [0,+∞)) is increasing in the second variable, and
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f2 ∈ C((0, 1) × (0,+∞), [0,+∞)) is decreasing in the second variable, so f1, f2 may
be singular at |x| = 0, |x| = 1, and f2 may have singularity at space variable u = 0.

In system (1), the operator Sk(µ(D2u)) is called Hessian operator, which is defined
by the sum of the kth principal minors of the Hessian matrix D2u, i.e.,

Sk
(
µ
(
D2u

))
=

∑
16i1<i2<···<ik6N

µi1µi2 · · ·µik , k = 1, 2, . . . , N.

In particular,

S1

(
µ
(
D2u

))
=

N∑
i=1

µi = ∆u, SN
(
µ
(
D2u

))
=

N∏
i=1

µi = det
(
D2u

)
are the Laplace operator [23,25,32,55] and the Monge–Ampére operator [9,10,16,19,22,
26, 28, 29], respectively. However, for 1 < k < N , Sk(µ(D2u)) is a second-order fully
nonlinear differential operator. It is well known that the Hessian operator can describe the
local curvature of a function of multiple variables, so has been usually applied to study
some geometry problems such as the Weingarten curvature and reflector shape design [40]
and Riemannian geometry [31, 41] as well as quasilinear parabolic problems [8].

It is necessary to review some existing work related to system (1) for the convenience
of readers. In the case k = 1, Lair [24] considered the existence of entire large solutions
for the following system of semilinear equations:

∆u = p
(
|x|
)
vα, x ∈ RN ,

∆v = q
(
|x|
)
uβ , x ∈ RN ,

lim
|x|→∞

u(x) = lim
|x|→∞

v(x) =∞,
(2)

where p, q are nonnegative continuous functions, 0 < α 6 1 and 0 < β 6 1. This
implies that the nonlinear terms of system (2) possess the same monotonicity, and exhibit
only a sublinear characteristic. By using an iterative technique and combining with
some estimations, Lair proved a sufficient and necessary condition for system (2) to have
a nonnegative entire large radial solution (u, v), namely, the functions p and q satisfy the
following slow decay conditions:

∞∫
0

tp(t)

(
t2−n

t∫
0

sn−3Q(s) ds

)α
dt =∞,

∞∫
0

tq(t)

(
t2−n

t∫
0

sn−3P (s) ds

)β
dt =∞,

where P (r) =
∫ r
0
τp(τ) dτ and Q(r) =

∫ r
0
τq(τ) dτ . In our recent work [58], we gen-

eralized the work in [24] to the following more general modified quasilinear Schrödinger
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elliptic system with a nonconvex diffusion term:

∆u+ ∆
(
|u|2γ

)
|u|2γ−2u = p

(
|x|
)
F (v)χγ(u),

∆v + ∆
(
|v|2δ

)
|v|2δ−2v = q

(
|x|
)
G(u)χδ(v),

lim
|x|→∞

u(x) = lim
|x|→∞

v(x) =∞ (i.e., u, v are large),

where x ∈ RN (N > 3), γ, δ > 1/2, χi(s) =
√

1 + 2i|s|2(2i−1), i > 1/2, and
the nonnegative functions p and q are continuous on RN . F , G are also required to
be increasing. When k = N , Loewner and Nirenberg [27] considered the existence of
solutions for the Monge–Ampère equation

det
(
D2u

)
= u−4 in Ω, u = 0 on ∂Ω.

Recently, by using the regularity theory and sub-supersolution method, Lazer and McKenna
[26] established a uniqueness result for the following Monge–Ampère equation:

det
(
D2u

)
= b(x)u−γ in Ω, u = 0 on ∂Ω, (3)

where γ > 1 and b ∈ C∞(Ω) is positive. It was proven that there exist positive constants
c1, c2 such that the unique solution u ∈ C2(Ω)∩C(Ω) satisfies the following asymptotic
property:

c1d
(N+1)/(N+γ)(x) 6 u(x) 6 c2d

(N+1)/(N+γ)(x) in Ω,

where d(x) = dist(x, ∂Ω). In [30], Mohammed focused on the existence and the global
estimates of solutions for the following Monge–Ampère equation:

det
(
D2u

)
= b(x)f(−u) in Ω, u = 0 on ∂Ω,

where f ∈ C∞((0,∞), (0,∞)) is decreasing, and b ∈ C∞(Ω) is positive. In our
recent work [61], by adopting the sub-supersolution method, we established an eigenvalue
interval for the existence of radial solutions for the following singular augmented Hessian
equation:

S
1/k
k

(
µ
(
D2u

)
+ σ(x)I

)
= −f

(
|x|, u

)
in B1 ⊂ RN (k 6 N < 2k),

u = 0 on ∂B1,

where B1 is a unit ball, f : [0, 1]× (0,+∞)→ (0,+∞) is continuous and nonincreasing
in u > 0. For some other related work, we refer the reader to the references [1, 2, 15, 18,
21, 33, 43, 44, 54, 57, 60, 62].

However, most of the works in the literature require that the nonlinear terms of the
system possess the same character such as [24, 58]. We also notice that f(u) = uα in (2)
and f(u) = u−γ in (3) belong to different type of problems. The former is increasing
and nonsingular, however, the latter is decreasing and can be singular at u = 0. Thus if
the nonlinear terms of the system possess the above different properties, that is, in the

https://www.journals.vu.lt/nonlinear-analysis

https://www.journals.vu.lt/nonlinear-analysis


The iterative properties of solutions for a singular k-Hessian system 149

coupling case of equations (2) and (3), a question arises, namely, does the solution of the
system exist? If so, is the solution unique? To answer this question, in this paper, we will
develop a double iterative technique to construct a new iterative process for deriving the
uniqueness of solutions, an iterative sequence of solution, error estimation, convergence
rate and entire asymptotic properties.

The rest of this paper is organized as follows. Some preliminaries and lemmas are
given in Section 2. The main results are stated in Section 3. An example is given to
illustrate our main results in Section 4.

2 Preliminary results on radial solutions

It is well known that for fully nonlinear differential equations, the best strategy to deal
with them is using the theory and method of nonlinear analysis such as operator theories
[7,13,14,17,39], spaces theories [3–5,11,34,35,46,48,49], smoothness theories [6,12,36–
38,42,47], variational theory [45,50–52,59], fixed point theorem [20,53,63,64], sub-super
solution method [61,62], semigroup approach [50], monotone iterative technique [56] etc.
Thus according to this strategy, in this paper, we shall firstly employ operator theories
and spaces theories to transform the k-Hessian system (1) to a convenient form and then
construct a double iterative process to establish our main results.

Denote the unit open ball Ω := {x ∈ RN : |x| < R}, let r =
√
x21 + x22 + · · ·+ x2N ,

we need the following lemmas.

Lemma 1. (See [21].) Suppose that φ(r)∈C2[0, R) is radially symmetric and φ′(0)=0.
Then u(|x|) = φ(r) ∈ C2(Ω) satisfies

µ
(
D2u

)
=

{
(φ′′(r), φ

′(r)
r , . . . , φ

′(r)
r ), r ∈ (0, R),

(φ′′(0), φ′′(0), . . . , φ′′(0)), r = 0,

and

Sk
(
µ
(
D2u

))
=

{
Ck−1N−1φ

′′(r)(φ
′(r)
r )k−1 + CkN−1(φ

′(r)
r )k, r ∈ (0, R),

CkN (φ′′(0))k, r = 0,

where r = |x| < R.

Make a radial symmetry transformation (φ(r), ψ(r)) = (u(|x|), v(|x|) for system (1),
then the following lemma is a direct corollary of Lemma 1.

Lemma 2. The k-Hessian system of equations (1) is equivalent to the following system
of second-order ordinary differential equations:

Ck−1N−1
(
−φ′′(r)

)(
−φ
′(r)

r

)k−1
+ CkN−1

(
−φ
′(r)

r

)k
= fk1

(
r, ψ(r)

)
, r ∈ (0, 1),

Ck−1N−1
(
−ψ′′(r)

)(
−ψ
′(r)

r

)k−1
+ CkN−1

(
−ψ
′(r)

r

)k
= fk2

(
r, φ(r)

)
, r ∈ (0, 1),

φ′(0) = ψ′(0) = 0, φ(1) = ψ(1) = 0,

(4)
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that is, (φ(r), ψ(r)) is a solution of (4) if and only if (u(|x|), v(|x|) is a classical solution
of the k-Hessian system of equations (1).

Now rewrite (4) by the following equivalent form:[
rN−k

k

(
−φ′(r)

)k]′
=
rN−1

Ck−1N−1
fk1
(
r, ψ(r)

)
, r ∈ (0, 1),[

rN−k

k

(
−ψ′(r)

)k]′
=
rN−1

Ck−1N−1
fk2
(
r, φ(r)

)
, r ∈ (0, 1),

φ′(0) = ψ′(0) = 0, φ(1) = ψ(1) = 0.

(5)

By integrating (5), one gets

φ(r) =

1∫
r

(
k

tN−k

t∫
0

sN−1

Ck−1N−1
fk1
(
s, ψ(s)

)
ds

)1/k

dt, r ∈ [0, 1],

ψ(r) =

1∫
r

(
k

tN−k

t∫
0

sN−1

Ck−1N−1
fk2
(
s, φ(s)

)
ds

)1/k

dt, r ∈ [0, 1].

(6)

Let

(Sφ)(s) = ψ(s) =

1∫
s

(
k

ξN−k

ξ∫
0

τN−1

Ck−1N−1
fk2
(
τ, φ(τ)

)
dτ

)1/k

dξ, s ∈ [0, 1], (7)

then system (6) can be converted into the following coupled nonlinear integral equation:

φ(r) =

1∫
r

(
k

tN−k

t∫
0

sN−1

Ck−1N−1
fk1
(
s, (Sφ)(s)

)
ds

)1/k

dt, r ∈ [0, 1], (8)

which implies that if φ(r) is a solution of the integral equation (8), then (φ(r), (Sφ)(r)) is
a radial classical solution of equation (4). Consequently, u(|x|), v(|x|) = (φ(r), ψ(r)) =
(φ(r), (Sφ)(r)) is a radial classical solution of equation (1). So, in the following, we
shall mainly focus on the integral equation (8).

Let E = C[0, 1]. It is a Banach space with the norm ‖φ‖ = maxr∈[0,1] |φ(r)|. Define
a cone of E

P =
{
φ ∈ C[0, 1]: φ(r) > 0, r ∈ [0, 1]

}
.

Obviously, it is a normal cone of E with normality constant 1. Now define a nonlinear
operator T : E → E by

(Tφ)(r) =

1∫
r

(
k

tN−k

t∫
0

sN−1

Ck−1N−1
fk1
(
s, (Sφ)(s)

)
ds

)1/k

dt, r ∈ [0, 1],

where (Sφ)(s) is defined by (7). Thus a fixed point φ(r) of the operator T is a solution
of the integral equation (8).
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3 Main results

In order to proceed the iterative process, the following growth conditions on f1 and f2
will be adopted:

(F) f1 : (0, 1) × [0,+∞) → [0,+∞) is continuous and increasing in the second
variable v, f2 : (0, 1)× (0,+∞)→ [0,+∞) is continuous and decreasing in the
second variable u and satisfies

χfi = inf
r∈(0,1)

fi
(
r, 1− r2−N/k

)
> 0, i = 1, 2. (9)

(G) For any σ ∈ (0, 1), there exist two constants α and β > 0 with 0 < αβ < 1 such
that, for any (t, u) ∈ (0, 1)× (0,+∞) and for any (t, v) ∈ (0, 1)× [0,+∞),

f1(t, σv) > σβf1(t, v), f2(t, σu) 6 σ−αf2(t, u). (10)

Remark 1. σ > 1, (F) and (G) hold, and by simple computation, one has

f1(t, σv) 6 σβf1(t, v), (t, v) ∈ (0, 1)× [0,+∞),

f2(t, σu) > σ−αf2(t, u), (t, u) ∈ (0, 1)× (0,+∞).
(11)

Remark 2. From condition (F) it is not difficult to see that f1 and f2 may be singular at
t = 0 and t = 1, f2 can be singular at u = 0. Let N/k = 3/2, a typical example is

f1(t, v) =
(
1 + t1/2

)2(
1 + v1/2

)
,

f2(t, u) = t−1/3
(
1− t1/2

)3/2
u−3/2.

In fact, take α = 1/3, β = 2, χf1 = χf2 = 1, then f1 and f2 satisfy assumptions (F)
and (G).

Remark 3. We also give an example to illustrate the full singularity of f1 and f2.
Let N/k = 3/2 and

f1(t, v) = t−1/2
(
1− t1/2

)−1/4
v1/4,

f2(t, u) =
(
1− t1/2

)3/2[
t−1/2 + (1− t)−1/2

]
u−3/2.

Thus f1 has singularity at both t = 0 and t = 1, f2 has singularity at both t = 0, t = 1
and u = 0. By simple calculation, we have

χf1 = 1, χf2 = 2
√

2.

Thus (F) holds.
Take α = 1/3, β = 2, then 0 < αβ < 1. For any σ ∈ (0, 1), we have

f1(t, σv) = t−1/2
(
1− t1/2

)−1/4
σ1/4v1/4

> t−1/2
(
1− t1/2

)−1/4
σ2v1/4 = σβf1(t, v)
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and
f2(t, σu) =

(
1− t1/2

)3/2[
t−1/2 + (1− t)−1/2

]
σ−3/2u−3/2

>
(
1− t1/2

)3/2[
t−1/2 + (1− t)−1/2

]
σ−1/3u−3/2

= σ−αf2(t, u).

So f1 and f2 satisfy assumption (G).

In this paper, we shall carry out our work in the following subsets of P :

K =

{
φ ∈ P : there exists a number 0 < lφ < 1 such that

lφ
(
1− r2−N/k

)
6 φ(r) 6

1

lφ

(
1− r2−N/k

)
, r ∈ [0, 1]

}
.

Theorem 1. Assume that (F)–(G) hold and fi, i = 1, 2, satisfy the conditions

0 <

1∫
0

sN−1fki
(
s, 1− s2−N/k

)
ds < +∞, i = 1, 2. (12)

Then we have the following conclusions:

(i) Uniquness. The singular k-Hessian system (1) has a unique classical solution
(φ∗, Sφ∗) in K;

(ii) Iterative sequence. For any initial value φ̃0 ∈ K, construct the iterative se-
quences

φ̃m(r) =

1∫
r

(
k

tN−k

t∫
0

sN−1

Ck−1N−1
fk1
(
s, (Sφ̃m−1

)
(s)
)

ds

)1/k

dt, r ∈ [0, 1],

(Sφ̃m−1)(r) =

1∫
r

(
k

tN−k

t∫
0

sN−1

Ck−1N−1
fk2
(
s, φ̃m−1(s)

)
ds

)1/k

dt, r ∈ [0, 1].

Then

lim
m→+∞

φ̃m(r) = φ∗(r), lim
m→+∞

(Sφm−1)(r) = (Sφ∗)(r)

uniformly hold for r ∈ [0, 1];
(iii) Error estimation. For the component φ∗ of the solution of the k-Hessian sys-

tem (1), the error estimation between φ∗ and the mth iterative value φ̃m can be
formulated by

‖φ̃m − φ∗‖ 6 2ζ−1/2
(
1− ζ(αβ)

2m)
,

where 0 < ζ < 1 is a positive constant, and hence, a convergence rate is

‖φ̃m − φ∗‖ = o
(
1− ζ(αβ)

2m)
;
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(iv) Entire asymptotic behaviour. The unique classical solution (φ∗, Sφ∗) of the
k-Hessian system (1) has entire asymptotic estimation, i.e., there exist two posi-
tive constants 0 < κ1, κ2 < 1 such that for any r ∈ [0, 1],

κ1
(
1− r2−N/k

)
6 φ∗(r) 6 κ−11

(
1− r2−N/k

)
,

κ2
(
1− r2−N/k

)
6 (Sφ∗)(r) 6 κ2

−1(1− r2−N/k).
Proof. Firstly, we prove that the operator T : K → K is a completely continuous operator.
To do this, for any φ ∈ K, it follows from the definition of K that there exists a constant
0 < lφ < 1 such that

lφ
(
1− t2−N/k

)
6 φ(t) 6

1

lφ

(
1− t2−N/k

)
, t ∈ [0, 1]. (13)

Take

l∗φ = min

{
1

3
,

(2− N
k )(Ck−1N−1)1/k

k1/kl−αφ

( 1∫
0

τN−1fk2
(
τ, 1− τ2−N/k

)
dτ

)−1/k
,

χf2 l
α
φk

1/k

2(Ck−1N−1)1/kN1/k

}
.

By using (10), (13), (12) and combining with the fact that f2(t, φ) is decreasing in φ,
we have

(Sφ)(s) =

1∫
s

(
k

ξN−k

ξ∫
0

τN−1

Ck−1N−1
fk2
(
τ, φ(τ)

)
dτ

)1/k

dξ

6

1∫
s

(
k

ξN−k

ξ∫
0

τN−1

Ck−1N−1
fk2
(
τ, lφ

(
1− τ2−N/k

))
dτ

)1/k

dξ

6 l−αφ

1∫
s

(
k

ξN−k

1∫
0

τN−1

Ck−1N−1
fk2
(
τ, 1− τ2−N/k

)
dτ

)1/k

dξ

6
k1/kl−αφ

(2− N
k )(Ck−1N−1)1/k

( 1∫
0

τN−1fk2
(
τ, 1− τ2−N/k

)
dτ

)1/k(
1− s2−N/k

)
6

1

l∗φ

(
1− s2−N/k

)
, s ∈ [0, 1], (14)

and

(Sφ)(s) =

1∫
s

(
k

ξN−k

ξ∫
0

τN−1

Ck−1N−1
fk2
(
τ, φ(τ)

)
dτ

)1/k

dξ

>

1∫
s

(
k

ξN−k

ξ∫
0

τN−1

Ck−1N−1
fk2
(
τ, l−1φ

(
1− τ2−N/k

))
dτ

)1/k

dξ
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> lαφ

1∫
s

(
k

ξN−k

ξ∫
0

τN−1

Ck−1N−1
fk2
(
τ, 1− τ2−N/k

)
dτ

)1/k

dξ

> χf2 l
α
φ

1∫
s

(
k

ξN−k

ξ∫
0

τN−1

Ck−1N−1
dτ

)1/k

dξ

>
χf2 l

α
φk

1/k

2(Ck−1N−1)1/kN1/k

(
1− s2

)
> l∗φ

(
1− s2−N/k

)
> 0, s ∈ [0, 1]. (15)

Now according to the monotonicity of f1 and (11), (14), one has

(Tφ)(r) =

1∫
r

(
k

tN−k

t∫
0

sN−1

Ck−1N−1
fk1 (s,

(
Sφ)(s)

)
ds

)1/k

dt

6

1∫
r

(
k

tN−k

t∫
0

sN−1

Ck−1N−1
fk1

(
s,

1

l∗φ

(
1− s2−N/k

))
ds

)1/k

dt

6 (l∗φ)−β
1∫
r

(
k

tN−k

t∫
0

sN−1

Ck−1N−1
fk1 (s, 1− s2−N/k) ds

)1/k

dt

6
k1/k(l∗φ)−β

(2− N
k )(Ck−1N−1)1/k

( 1∫
0

τN−1fk1
(
τ, 1− τ2−N/k

)
dτ

)1/k(
1− r2−N/k

)
<∞. (16)

Thus the operator T is uniformly bounded.
On the other hand, for any 0 6 r1 < r2 6 1 and φ ∈ K, it follows from (11), (12),

(14) that∣∣(Tφ)(r1)− (Tφ)(r2)
∣∣

6

∣∣∣∣∣
r2∫
r1

(
k

tN−k

t∫
0

sN−1

Ck−1N−1
fk1
(
s, (Sφ)(s)

)
ds

)1/k

dt

∣∣∣∣∣
6

(l∗φ)−β

(Ck−1N−1)1/k

∣∣∣∣∣
r2∫
r1

(
k

tN−k

)1/k

dt

( 1∫
0

sN−1fk1
(
s, 1− s2−N/k

)
ds

)1/k∣∣∣∣∣
6

k1/k(l∗φ)−β

(2− N
k )(Ck−1N−1)1/k

( 1∫
0

τN−1fk1
(
s, 1− s2−N/k

)
dτ

)1/k

×
∣∣r2−N/k2 − r2−N/k1

∣∣→ 0, |r1 − r2| → 0,

which implies that T (K) is equicontinuous.
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Next, we show that T (K) ⊂ K. In fact, for any φ ∈ K, it follows from (9), (11), (13)
that

Tφ)(r) =

1∫
r

(
k

tN−k

t∫
0

sN−1

Ck−1N−1
fk1
(
s, (Sφ)(s)

)
ds

)1/k

dt

>

1∫
r

(
k

tN−k

t∫
0

sN−1

Ck−1N−1
fk1
(
s, l∗φ

(
1− s2−N/k

))
ds

)1/k

dt

> (l∗φ)βχf1

(
k

Ck−1N−1

)1/k
1∫
r

(
1

tN−k

t∫
0

sN−1 ds

)1/k

dt

>
1

2
(l∗φ)βχf1

(
k

NCk−1N−1

)1/k(
1− r2

)
>

1

2
(l∗φ)βχf1

(
k

NCk−1N−1

)1/k(
1− r2−N/k

)
. (17)

Take

l̃Tφ = min

{
1

3
,

{
k1/k(l∗φ)−β

(2− N
k )(Ck−1N−1)1/k

( 1∫
0

τN−1fk1
(
s, 1− s2−N/k

)
dτ

)1/k}−1
,

1

2
(l∗φ)βχf1

(
k

NCk−1N−1

)1/k
}
. (18)

Then it follows from (16) and (17) that

l̃Tφ
(
1− r2−N/k

)
6 (Tφ)(r) 6 l̃−1Tφ

(
1− r2−N/k

)
,

which implies that T (K) ⊂ K. It is clear that T is a continuous operator, thus T : K → K
is a completely continuous operator.

Secondly, by finding a special initial value, we shall construct an iterative process to
establish the result of the uniqueness of classical solution of the k-Hessian system (1).

Take ρ(r) = 1 − r2−N/k and lρ = 1/2, then ρ ∈ K. Since T (K) ⊂ K, we have
Tρ ∈ K. Thus by (18), we can choose a constant 0 < lTρ < 1 such that

lTρρ(r) 6 (Tρ)(r) 6
1

lTρ
ρ(r). (19)

Notice 0 < αβ < 1, we have limγ→+∞ 2−γ(1−αβ) = 0, which implies that there exists
a sufficiently large positive constant γ0 such that

2−γ0(1−αβ) 6 lTρ . (20)
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We fix the initial value φ0 = 2−γ0ρ(r) and denote

(Sφ0)(s) =

1∫
s

(
k

ξN−k

ξ∫
0

τN−1

Ck−1N−1
fk2
(
τ, 2−γ0ρ(τ)

)
dτ

)1/k

dξ, s ∈ [0, 1]. (21)

Now let us construct an iterative sequence

φ1(r) = (Tφ0)(r) =

1∫
r

(
k

tN−k

t∫
0

sN−1

Ck−1N−1
fk1
(
s, (Sφ0)(s)

)
ds

)1/k

dt,

φ2(r) = (Tφ1)(r) =

1∫
r

(
k

tN−k

t∫
0

sN−1

Ck−1N−1
fk1
(
s, (Sφ1)(s)

)
ds

)1/k

dt,

· · ·

φm(r) = (Tφm−1)(r) =

1∫
r

(
k

tN−k

t∫
0

sN−1

Ck−1N−1
fk1
(
s, (Sφm−1)(s)

)
ds

)1/k

dt.

(22)

We assert that the above iterative sequence {φm}|∞m=0 satisfies the following inequal-
ities:

φ0 6 φ2 6 · · · 6 φ2m 6 · · · 6 φ2m+1 6 · · · 6 φ3 6 φ1. (23)

Now we shall prove the above fact. Firstly, note that the operator T is decreasing in φ,
thus, by using (19)–(22), we have

φ0(r) 6 ρ(r),

φ1(r) = (Tφ0)(r) > (Tρ)(r) > lTρρ(r)

> 2−γ0(1−αβ)ρ(r) = 2αβγ02−γ0ρ(r) > φ0(r)

and then
φ2(r) = (Tφ1)(r) 6 (Tφ0)(r) = φ1(r).

Consequently, it follows from (10) and (19)–(20) that

φ1(r) = (Tφ0)(r) =

1∫
r

(
k

tN−k

t∫
0

sN−1

Ck−1N−1
fk1
(
s, (Sφ0)(s)

)
ds

)1/k

dt

6

1∫
r

(
k

tN−k

t∫
0

sN−1

Ck−1N−1
fk1
(
s, 2αγ0(Sρ)(s)

)
ds

)1/k

dt

6 2αβγ0
1∫
r

(
k

tN−k

t∫
0

sN−1

Ck−1N−1
fk1 (s,

(
Sρ)(s)

)
ds

)1/k

dt

= 2αβγ0(Tρ)(r) 6 2αβγ0 l−1Tρ ρ(r) 6 2γ0(1−αβ)2αβγ0ρ(r)

= 2γ0ρ(r). (24)
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Now by using the monotonicity of T as well as (11), (19) and (24), we have

φ2(r) = Tφ1(r) > T
(
2γ0ρ(r)

)
=

1∫
r

(
k

tN−k

t∫
0

sN−1

Ck−1N−1
fk1
(
s,
(
S2γ0ρ

)
(s)
)

ds

)1/k

dt

>

1∫
r

(
k

tN−k

t∫
0

sN−1

Ck−1N−1
fk1
(
s, 2−αγ0(Sρ)(s)

)
ds

)1/k

dt

> 2−αβγ0Tρ(r) > 2−αβγ0 lTρρ(r) > 2−γ0ρ(r) = φ0,

which implies
φ0 6 φ2 6 φ1.

By induction, inequality (23) holds.
On the other hand, for any c ∈ (0, 1), by (G) and (11), one gets

T (cφ) 6 c−αβTφ, T 2(cφ) > c(αβ)
2

T 2φ. (25)

Obviously, the operator T 2 is nondecreasing with respect to φ, thus it follows from (24)
and (25) that

φ2m = Tφ2m−1(r) = T 2mφ0 = T 2m
(
2−γ0ρ(r)

)
= T 2m

(
2−2γ02γ0ρ(r)

)
> T 2m−2(T 2

(
2−2γ0φ1(r)

))
> T 2m−2((2−2γ0)(αβ)2T 2φ1(r)

)
= T 2m−4T 2

((
2−2γ0

)(αβ)2
T 2φ1(r)

)
> T 2m−4((2−2γ0)(αβ)4T 4φ1(r)

)
> · · · >

(
2−2γ0

)(αβ)2m
T 2mφ1(r)

= (2−2γ0)(αβ)
2m

T 2m+1φ0(r) = 2−2γ0(αβ)
2m

φ2m+1,

which implies
2−2γ0(αβ)

2m

φ2m+1 6 φ2m 6 φ2m+1.

Thus, for all m, p ∈ N, one has

0 6 φ2(m+p)(r)− φ2m(r) 6 φ2m+1(r)− φ2m(r)

6
(
1− 2−2γ0(αβ)

2m)
φ2m+1 6

(
1− 2−2γ0(αβ)

2m)
φ1

6
(
1− 2−2γ0(αβ)

2m)
2γ0ρ(r) (26)

and
0 6 φ2m+1(r)− φ2(m+p)+1(r) 6 φ2m+1(r)− φ2m(r)

6
(
1− 2−2γ0(αβ)

2m)
2γ0ρ(r). (27)

Since P is a normal cone with normality constant 1, in view of (26), (27), we obtain

‖φm+p − φm‖ 6
(
1− 2−2γ0(αβ)

2m)
2γ0 → 0, m→ +∞,
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which implies that {φm} is a Cauchy sequence of compact set K. Therefore there exists
some φ∗ ∈ K such that {φm} → φ∗ as m → ∞ satisfying φ2m 6 φ∗ 6 φ2m+1. Thus
according to the monotonicity of T , we have

φ2m+2 = Tφ2m+1 6 Tφ∗ 6 Tφ2m = φ2m+1. (28)

Taking the limit on both sides of (28), one gets φ∗(r) = Tφ∗(r), i.e., φ∗ is a solution
of the integral equation (8), and then (φ∗, Sφ∗) is a classical solution of the k-Hessian
system (1).

Next, we show that the solution (φ∗, Sφ∗) of the k-Hessian system (1) is unique in
K. Clearly, we only need to prove that φ∗(r) is unique in K. To do this, suppose that
(φ̃, Sφ̃) is another solution of the k-Hessian system (1). Let %1 = sup{% > 0|φ̃ > %φ∗},
obviously, %1 ∈ (0,+∞). Next, we show %1 > 1. If not, one has 0 < %1 < 1, which
leads to

φ̃ = T φ̃ = T 2φ̃ > T 2(%1φ
∗) > %

(αβ)2

1 T 2φ∗ = %
(αβ)2

1 φ∗.

It follows from definition of % that %1 > %
(αβ)2

1 . On the other hand, since 0 < αβ < 1 and
0 < %1 < 1, we have %(αβ)

2

1 > %1, that is a contradiction. Therefore %1 > 1, which yields
φ̃ > φ∗. Following the same strategy, we also have φ̃ 6 φ∗. Thus φ̃ = φ∗, i.e., φ∗(r) is
unique in K. Consequently, the solution (φ∗, Sφ∗) of the k-Hessian system (1) is unique
in K.

Finally, we prove the iterative properties of the unique solution (φ∗, Sφ∗) to the
k-Hessian system (1). We choose an initial value φ̃0 ∈ K and construct an iterative
sequence

φ̃m(r) = (T φ̃m−1)(r)

=

1∫
r

(
k

tN−k

t∫
0

sN−1

Ck−1N−1
fk1
(
s,
(
Sφ̃m−1

)
(s)
)

ds

)1/k

dt, r ∈ [0, 1],

(Sφ̃m−1)(s)

=

1∫
s

(
k

ξN−k

ξ∫
0

τN−1

Ck−1N−1
fk2
(
τ, φ̃m−1(τ)

)
dτ

)1/k

dξ, s ∈ [0, 1],

where m = 1, 2, 3, . . . . It follows from T (K) ⊂ K that φ̃1 = T φ̃0 ∈ K, which implies
that there exist two constants lφ̃0

, lφ̃1
∈ (0, 1) such that

lφ̃0
ρ(r) 6 φ̃0(r) 6

1

lφ̃0

ρ(r), lφ̃1
ρ(r) 6 φ̃1 = T φ̃0 6

1

lφ̃1

ρ(r), r ∈ [0, 1]. (29)

Since limγ→+∞ 2−γα = 0, we can take a sufficiently large constant γ0 such that

2−αγ0 6 min{lφ̃0
, lφ̃1

, lTρ}. (30)
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Thus by (29) and (30), we have

φ0 = 2−γ0ρ(r) 6 2−αγ0ρ(r) 6 lφ̃0
ρ(r) 6 φ̃0,

φ0 = 2−γ0ρ(r) 6 2−αγ0ρ(r) 6 lφ̃1
ρ(r) 6 φ̃1,

which lead to

φ̃1 = T φ̃0 6 Tφ0 = φ1, φ0 6 φ̃1 6 φ1, φ2 6 φ̃2 6 φ1. (31)

Thus by continuous iteration for (31), one derives

φ2m(r) 6 φ̃2m+1(r) 6 φ2m+1(r),

φ2m+2(r) 6 φ̃2m+2(r) 6 φ2m+1(r).
(32)

Letting m → ∞ in (32), we have that φ̃m → φ∗ and Sφ̃m → Sφ∗ uniformly hold for
r ∈ [0, 1].

Moreover, it follows from (26), (27) and (32) that∥∥φ̃2m+1 − φ∗
∥∥ 6

∥∥φ̃2m+1 − φ2m(r)
∥∥+

∥∥φ2m(r)− φ∗
∥∥

6
∥∥φ2m+1 − φ2m(r)

∥∥+
∥∥φ2m(r)− φ∗

∥∥
6 2
(
1− 2−2γ0(αβ)

2m

2γ0

= 2ζ−1/2
(
1− ζ(αβ)

2m)
and ∥∥φ̃2m+2 − φ∗

∥∥ 6
∥∥φ̃2m+2 − φ2m+2(r)

∥∥+
∥∥φ2m+2(r)− φ∗

∥∥
6
∥∥φ2m+1 − φ2m+2(r)

∥∥+
∥∥φ2m+2(r)− φ∗

∥∥
6 2
(
1− 2−2γ0(αβ)

2m)
2γ0

= 2ζ−1/2
(
1− ζ(αβ)

2m)
,

which imply that ∥∥φ̃m − φ∗∥∥ 6 2ζ−1/2
(
1− ζ(αβ)

2m)
,

where 0 < ζ = (1/4)γ0 < 1 is a positive constant, which is determined by ρ and initial
value φ̃0. In addition, we also have an exact convergence rate for φ∗ that can be formulated
by ‖φ̃m − φ∗‖ = o(1− ζ(αβ)2m).

In the end, it follows from φ∗ ∈ K and (14)–(17) that there exist two constants
0 < κ1, κ2 < 1 such that for any r ∈ [0, 1],

κ1
(
1− r2−N/k

)
6 φ∗(r) 6 κ1

−1(1− r2−N/k),
κ2
(
1− r2−N/k

)
6 (Sφ∗)(r) 6 κ2

−1(1− r2−N/k).
The proof is completed.
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4 An example

In this section, we give an example to illustrate our main results.

Example. Let f1(t, v) = (1 + t1/2
)2

(1 + v1/2), f2(t, u) = t−1/3(1− t1/2)3/2u−3/2, and
consider the following singular 3-Hessian system:

(−1)3S
1/3
3

(
µ
(
D2u

))
=
(
1 + t1/2

)2(
1 + v1/2

)
in Ω ⊂ R5,

(−1)3S
1/3
3

(
µ
(
D2v

))
= t−1/3

(
1− t1/2

)3/2
u−3/2 in Ω ⊂ R5,

u = v = 0 on ∂Ω,

(33)

whereΩ is an open unit ball. For the singular 3-Hessian system, the following conclusions
hold:

(i) Uniqueness. The 3-Hessian system (33) has a unique classical radial solution
(φ∗, Sφ∗) in K;

(ii) Iterative schemes. For any initial value φ̃0 ∈ K, construct the iterative sequences

φ̃m(r) =

1∫
r

(
3

t2

t∫
0

s4

6

(
1 + s1/2

)6(
1 + (Sφ̃m−1)1/2(s)

)3
ds

)1/3
dt, r ∈ [0, 1],

(Sφ̃m−1)(r) =

1∫
r

(
3

t2

t∫
0

s3

6

(
1− s1/2

)9/2(
φ̃m−1(s)

)−9/2
ds

)1/3

dt, r ∈ [0, 1].

Then
lim

m→+∞
φ̃m(r) = φ∗(r), lim

m→+∞
(Sφm−1)(r) = (Sφ∗)(r)

uniformly hold for r ∈ [0, 1];

(iii) Error estimation. For the component φ∗ of the solution (φ∗, Sφ∗) of the k-
Hessian system (1), the error estimation between φ∗ and the mth iterative value φ̃m can
be formulated by

‖φ̃m − φ∗‖ 6 2ζ−1/2(1− ζ(4/9)
m

),

where 0 < ζ < 1 is a positive constant. Moreover, there is a convergence rate

‖φ̃m − φ∗‖ = o
(
1− ζ(4/9)

m)
;

(iv) Entire asymptotic behaviour. The unique classical solution (φ∗, Sφ∗) of the
k-Hessian system (33) has entire asymptotic estimation, i.e., there exist two positive
constants 0 < κ1, κ2 < 1 such that for any r ∈ [0, 1],

κ1
(
1− r1/3

)
6 φ∗(r) 6 κ1

−1(1− r1/3),
κ2
(
1− r1/3

)
6 (Sφ∗)(r) 6 κ2

−1(1− r1/3).
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Proof. It follows from Remark 2 that f1 and f2 satisfy conditions (F) and (G). So we only
need to check condition (12). In fact, since k = 3, N = 5, we have

0 <

1∫
0

s4f31
(
s, 1− s1/3

)
ds =

1∫
0

s4
(
1 + s1/2

)6(
1 + (1− s1/3)1/2

)3
ds

= 4.1647 < +∞
and

0 <

1∫
0

s4f32
(
s, 1− s1/3

)
ds =

1∫
0

s3
(
1− s1/2

)9/2(
1− s1/3

)−9/2
ds

= 0.0072 < +∞,

which imply that (12) holds. Thus it follows from Theorem 1 that the above conclusions
hold.
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