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Abstract: The revolution in Big Data has opened the gate for new research 
challenges in biomedical science. The aim of this study was to investigate 
whether germ-line gene mutations are a significant factor in 29 major primary 
human cancers. Using data obtained from multiple biological databases, we 
identified 424 genes from 8879 cancer mutation records. By integrating these 
gene mutation records a human cancer map was constructed from which several 
key results were obtained. These include the observations that 
missense/nonsense and regulatory mutations might play central role in 
connecting cancers/genes, and tend to be distributed in all chromosomes. This 
suggests that, of all mutation classes missense/nonsense and regulatory 
mutation classes are over-expressed in human genome and so are likely to have 
a significant impact on human cancer etiology and pathomechanism. This offers 
new insights into how the distribution and interconnections of gene mutations 
influence the development of cancers. 
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[Genomic Mutation Big Data Enable The Discovery of The Influence of 

Different Genes in 26 Human Cancers] presented at [BIBM, Belfast, 

November 2-5, 2014]. 
 
 
 

 
1    Introduction 

 

 

Big data provides innovative approaches for capturing, processing, searching, analysing, 

storing, transferring and visualising large and complex datasets, where datasets become 

very hard to process using traditional database tools. Big data has become a frontier for 

many academic researchers and has found many applications, including in the private and 

public sectors. Recently, a rapid increase in online biological data has provided the 

possibility for scientists to gain insights from data analytics. Online biological 

repositories  have  become  the  significant  source  for  biological  records,  examples 

including: 
 

• The Online Mendelian Inheritance in Man (OMIM) (Amberger et al., 2009), which 

began in 1960s in 12 editions published books, moved into online database in 

1987, and then moved onto the world wide web (WWW) in 1995. By July 2014 the 

database contained 22,435 genetics records, with each record containing a hundred to 

a thousand records attached to it.
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•    The HUGO gene nomenclature committee (HGNC) database, which holds a total of 

33,000 symbols, each of which consists a further hundred or thousand records. 
 

• The human gene mutation database (HGMD) (Stenson et al., 2009), which provides 

an online human mutation database containing a total of 148,413 records collected 

between 1997 and 2012. 
 

• The genetic association database (GAD) (Duarte et al., 2007) which is an online 

library of published genetic association studies holding more than 130,000 entries of 

human genetic association studies. 
 

• The cancer gene census database (COSMIC) (Stratton et al., 2009) that holds a total 

of 4,970,019 cancers related records. 
 

• DAVID bioinformatics database (DAVID) (Sherman et al., 2007) that provide 

database and tools for online functional annotation. 
 

•    The biological general repository for interaction datasets (BioGRID) (Stark et al., 

2011), which provides an online database containing a total of 684,996 genetic 

interaction reports. 
 

The availability of aforementioned, biological data has opened up enormous potential for 

physicians, genetic counsellors and biomedical researchers further study of disease 

associations, to vastly improve our knowledge and understanding of how diseases are 

caused, and to eventually help the development of appropriate treatments. 

In this study we curated various mutation datasets from multiple online biological 

databases, in order to investigate the influence of germ-line cancer mutation classes on 

the associated human cancers, considering them as major potential factors human cancer. 

We investigated the association of germ-line mutation classes of 424 genes with 26 

primary human cancers. We systematically constructed and analysed a Human Cancer 

Map (HCM) and a Genome Wide Distribution Map based on 8870 germ-line cancer 

mutation records in the context of their distribution in the associated pathways and the 

relevance of biological factors. We applied Choen’s Kappa (k) Coefficient to quantify the 

degree of agreement between two or more connected cancers on the basis of the 

shared gene associations. The analytic results suggest that, of all mutation classes 

missense/nonsense and regulatory mutation classes are over-expressed in the human 

genome and so are likely to have a significant impact on human cancer etiology and 

pathomechanism. It is also seen that several Chromosomes (Chr17, Chr1, Chr15, Chr2 

and Chr3) tended to contribute to cancer genes disproportionally compared with other 

chromosome, whereas Chr21 and Chr-y did not show any contribution to any of the 

cancer-associated genes. Chromosome 17 carried the highest number of cancer-related 

genes with high mutation (14% of total), with chromosome X carrying the fewest (1%). 

This offers new insights into how the distribution and interconnections of gene mutations 

influence the development of cancers. 
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2    Materials and methods 
 

2.1   Data integration 
 

Data integration combine data obtained from different sources, with ‘cleaning-up’ to 

provide a unified view for users. This process is a significant element of this study, as it 

involves complex procedures to combine scientific data and findings from different 

depositories (Halevy, 2001). This process results in a new ‘data warehouse’, procedures 

of extracting data from various sources, and then transforming it to construct a database 

suitable for a particular operation, and loading it to be in a useable format (ETL)  for  data  

mining  and  analytics  (Chaudhuri  and  Dayal,  1997). We applied the ETL process to 

perform data extraction from three complementary data sources, i.e., genetic association 

database (GAD), Sanger database (COSMIC) and (HGMD), and then transform it into a 

suitable dataset layout through cleaning, reformatting, standardisation, aggregation of 

multiple datasets. 

 
2.2   The genetic association database (GAD) 

 

The GAD (Becker et al., 2004), is an online library archive of published genetic 

association studies. The GAD provides a comprehensive, public, web-based repository of 

molecular, clinical and study parameters for more than 130,000 entries of human genetic 

association studies. These includes 17 different disease classes, such as cancer, aging, 

cardiovascular, chem dependency, developmental, haematological, immune, infection, 

metabolic,  mitochondrial,  neurological,  normal  variation,  pharmacogenomics, 

psychiatric, renal, reproduction, and vision. Each entry of the GAD is saved as an 

independent record and is composed of 22 fields (or attributes), including gene symbol, 

entrez  GeneID,  chromosomal  location,  associated  tag  between  genes  and  disorders 

(‘Y’, N), DNA position, P-value, reference and its corresponding PubMed is and OMIM 

id, etc. 

The downloaded file (on 30 November, 2011) contained a total of 21,444 disorder 

records, each one of these records was tagged as positive or negative associations. We 

only  selected  the  records  that  have  positive  association  with  cancers  record,  which 

resulted in total a set of 1908 records. These 1908 records contained a total of 486 unique 

genes and 480 duplicated primary or subtype cancer names. 

 
2.3   The cancer gene census database (COSMIC) 

 

The COSMIC (Futreal et al., 2004) is a collection of somatic and germ-line mutations 

with information on the mutation class. The mutation information based on those 

mutations implicated in the development of particular cancers. The COSMIC database 

stores a total of 4,970,019 mutations entries. Each entry of COSMIC is saved as a unique 

independent record and is composed of sixteen fields (attributes) including; gene symbol, 

name of gene, geneID, chromosome, chromosome band, somatic mutation, germ-line 

mutation, tumour type (somatic mutation), tumour type (germ-line mutation), cancer 

syndrome,  tissue  type,  cancer  molecular  genetics,  mutation  subclasses,  translocation, 

other syndromes.
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The  COSMIC  data  was  downloaded  on  1st  February,  2012.  We extracted 76 

genes from 27,829 cancer-related mutation records, based on their germ-line mutations. 

 
2.4   The human gene mutation database (HGMD) 

 

The HGMD (Stenson et al., 2009) is a large depository of data on human germ-line 

mutations  with  details  of  mutation  classes.  The  mutation  data  includes  point 

mutations   of   a   single   base   pair   with   insertions   and   deletions,   regulatory   and 

splicing-relevant regions of, micro-deletions (indels), repeat variants, gross lesions 

(deletions, insertions and duplications) and complex rearrangements. The mutation data 

was stored as independent records and presented on a gene-wise basis. It also provides 

access to the mutation classes data via a hypertext link, including additional data sources 

(i.e., Genome Database (GDB), Online Mendelian inheritance in Man (OMIM), HUGO 

Gene Nomenclature Committee (HGNC), Entrez Gene, GeneCards, GeneAtlas, 

GeneClinics, UniGene, SwissProt and the Human Protein Reference Database from each 

gene page. 

In order to extract data from the web-based application of HGMD, a gene symbol is 

needed. The gene symbols used here were based on merging the GAD and COSMIC 

gene  data,  then  performing  a  filtering  process  to  remove  duplicated  genes.  In total 

520 unique genes were collected which  represent cancer-associated  genes.  The HGMD 

was then extracted based on the gene symbols from the HGMD web-based applications. 

The data included gene symbol, gene descriptions, chromosome location, cDNA sequence 

ID, mutation subclasses, total number of mutations for each gene, total number of specific 

class of mutation for each of the gene, related phenotypes, unique mutation ID, PubMed 

references, and some additional information about the gene. The search was further 

expanded by using cancer names obtained from the GAD to increase the chance of 

finding new cancer-related gene and mutation records. As a result a total of 

15,264 records were collected, with a combination of cancers and some non-cancers 

disorders for each of the 10 different mutation classes. The data were then cross-checked 

to ensure there was no duplication of the data and none of the records were eliminated by 

the ETL process (see Figure 1). Table 1 summarises the total number records for each 

mutation class. 

 
Table 1        Classes of mutations and the total number of collected records for cancers and 

non-cancer disorders 
 

 
Classes of mutations 

Total number of 
mutation records 

Non-cancer 
mutations 

Cancers 
mutations 

Missense nonsense 7456 4371 3085 

Small deletion 3280 1181 2099 

Splicing 1386 295 1091 

Gross deletions 1227 325 902 

Small insertions 1190 374 816 

Regulatory 280 91 189 

Small indels 177 34 143 

Gross insertions 150 19 131 

Comples rearrangements 77 11 66 

Repeat variations 42 16 25 

Total 15,264 6717 8547 
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Figure 1    Extract, transform, and load (ETL). The left hand side three main biological databases used in this 
project. The ETL is the process to extract data, and prepare the data suitable for further analytics 
(see online version for colours) 

 

 
 
 
 

2.5   Data preparation 

A total of 15,264-curated mutation records were extracted from the HGMD database and 

were found to be highly complex in its first iteration. A set of procedures was employed 

for the data pre-processing, including the elimination of non-cancer records, and merging 

the  sub-types  of  cancers.  Non-cancer  records  were  eliminated  from  the  list  using 

published literature studies in the following databases (e.g., PubMed, OMIM and other 

online  libraries)  (Amberger  et  al.,  2009).  This  process  eliminated  a  total  of  6717 

non-cancer records from the original list (see Table 1). 

Secondly, the naming of the cancers were re-processed to enable consistency. For 

example, ‘Leukaemia’ has two subclasses – ‘Acute Leukaemia’ and ‘Chronic 

Leukaemia’, and each one of these have a variety of subtypes. On the other hand, many 

of the cancers were duplicated because of the presence of synonyms in the list e.g., 

‘Bowel’ cancer, ‘Colorectal’ cancer and ‘Colon’ cancer. These entries were merged into 

the  primary  cancer  term  e.g.,  ‘Bowel  cancer’.  To  complete  this  merging  accurately 

a  hierarchy  list  of  cancer  designations  for  each  of  the  cancer  types  was  created 

(i.e., primary, secondary, tertiary and quaternary subclass cancer names) to construct a 

family tree for the primary cancers. 

The family tree  of cancers was  constructed  based on  terms  used by Cancer 

Research  UK  (Grzybowska  et  al.,  2002).  The  family  tree  was  used  to  inform  a 

re-arrangement of the data, which builds two maps, namely: a HCM and a genome-wide 

distribution map (GWD). After this data pre-processing a total of 8879 mutation records 

remain, which contained a total of 26 primary unique cancers and a set of 424 unique 

genes.  Each  of  the  8879  mutation  records  was  stored  as  an  independent  record 

(see Figure 2). The dataset was manipulated to construct a table containing the following 

entries: gene symbol, unique mutation ID, sub class of mutation, cancers disorder name, 

total number of mutations for each gene, total number of mutations for each of the 

10 different classes of mutations, and the associated PubMed references. 
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Figure 2    Algorithmic framework for the extractions and preparation of gene mutations data. 
The start point at the top of the image shows the databases used for finding the 
cancer-associated genes, and the mutation records. The data is then split into cancer 
records and non-cancer related records. This is followed by filtering and merging the 
data based on primary cancer names (see online version for colours) 

 

 

 
2.6   Cohen’s Kappa (k) coefficient 

 

To evaluate the association between two cancers, we performed a statistical analysis on 

the agreement of each cancer pair based on the shared genes and mutation class. The 

Cohen’s  kappa  coefficient  (Carletta,  1996;  Cohen,  1960)  is  used  to  quantify  the 

agreement between two individuals (a and b): 
 

k (a, b) = 
 A(a, b) − P(a, b) 

1 − P(a, b) 
 

where A(a, b) is the relative observed agreement between a and b, and P(a, b) is the 

hypothetical probability of chance agreement, using the observed data to calculate the 

probabilities of each observer randomly saying each category. If two individuals are in 

complete agreement then the Cohen’s kappa coefficient k is equal to 1, while if there is 

no agreement between the two individuals then k = 0. 

For example Table 2 is the observation of five genes in two cancers a and b. Table 3 

show the agreements and disagreement between the observation on cancer a and b. The 

Cohen’s kappa coefficient is calculated involving the following three steps: 
 

•     Calculate the observed percentage agreement between a and b,
 

A(a, b) = 
 C (1,1) + C (0, 0) 

= 
 3 + 1 

= 0.8. 
C (*,*)             5 

 
(1)

•     Calculate the probability of random agreement between a and b 
 

P(a, b) = 
 C (*,1)C (1.*) + C (*, 0)C (0, *) 

= 
 4 × 3 + 1× 2 

= 0.56. 
C (*,*)C (*,*)                     5 × 5 

 

 
 
(2)

•     Calculate the degree of k, 
 

k (a, b) = 
 A(a, b) − P(a, b) 

= 
 0.8 − 0.56 

= 0.55 
1 − P(a, b)           1 − 0.56 

 

 
 
(3)
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Table 2        The observation of five genes in two cancers (a and b). It is assigned to be 1 if a gene 

is related to a cancer, otherwise 0 is assigned 
 

 Gene 1 Gene 2 Gene 3 Gene 4 Gene 5 

Cancer a 1 1 1 0 0 

Cancer b 1 1 1 1 0 

where A(a, b) represent the observed percentage agreement for each connected cancers in 

the network and P(a, b) the probability of random agreement for each two interconnected 

cancers in the network. K(a, b) is the Cohen’s Kappa coefficient. 

In this study, we classified the degree of association between two cancers into four 

categories: ‘very highly connected’, ‘highly connected’, and ‘moderately connected’ and 

‘poorly  connected’.  Two  cancers  are  defined  as  being  very  highly  connected  if  the 

Cohen’s kappa coefficient (k) is above 0.75, being highly connected if k is between 0.5 

and 0.75, being Moderately connected if k is between 0.25 and 0.5, while being poor 

connected if k is less than 0.25.  

 
Table 3        The number of agreements and disagreements for the observations on cancer a and b 

 
 
 
 
 
 
 
 
 

 

  Cancer b  

1  0 Row total 

Cancer a 1 C(1, 1) = 3  C(1, 0) = 0 C(1,*) = 3 
 

 
Column total 

0 C(0, 1) = 1 

C(*, 1) = 4 

 C(0, 0) = 1 

C(*, 0) = 1 

C(0, *) = 2 

C(*, *) = 5 

 
 

3    Results and discussion 
 

3.1   A human cancer map (HCM) based on cancer-linked genes and their 
associated mutation classes 

 

The HCM map showing the associations between cancers was interrogated by using 

multiple packages in R, including Reshape, Match, Plyr, as well as in-house developed 

software to process the 8879 mutation records (Figure 2). Two cancer disorders are 

connected only if they involve the same mutation class affecting the same gene. The 

HCM displayed connections between nodes of primary cancers, with each connection 

representing an implicated gene(s) and its contributing mutation class. Of the 26 primary 

cancers involved in this study, 20 cancers showed at least one link to other cancers in the 

map. 69 unique genes (16.2% of the total in the gene set) underpinned these inter-cancer 

links. This observation suggests that both gene and associated mutation class plays a 

central role in associating cancer nodes (Li et al., 1997). 

Next, the degree of connectivity of the primary cancer nodes distributed in the map 

was assessed. It is shown that 7 primary cancers, representing one particular hub in the 

map, were found to be connected to a large number of other cancers as indicated by their 

high connectivity (c value). For example, Bowel cancer (c = 18), Lung cancer (c = 17), 

Breast cancer (c = 16), Brain tumours (c = 13), Ovarian cancer (c = 13), Stomach cancers 

(c = 12),  and  Melanoma  (c = 11).  This  finding  indicates  that  each  of  these  primary
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cancers is associated with several other primary cancers via the same gene and mutation 

classes (Figure 3). 

 
3.2 Mapping genes involved in the human cancer map to their genome-wide 

chromosomal position (GWD map) 
 

The next step of this study was to investigate the distribution of the mutations of the 

69 identified genes involved in 20 primary cancers on their respective chromosome 

(Figure 2). 4964 mutation records are involved in these 69 genes. Based on the 4964 

mutation records the association of genes was investigated. Two or more genes were 

associated if they are both involved with the same cancer via the same mutation class. For 

example the genes XPC, ERCC6 are considered to be associated with each other because 

both tended to be causative genes for Bladder cancer at the same Missense/Nonsense 

mutation  (García-Closas  et  al.,  2006).  The  gene MLH1 was  excluded  from such an 

association with Bladder cancer because it is associated by a different type of mutation 

class (i.e., small deletions). Conversely, Bowel cancer is associated three genes (XPC, 

ERCC6 and MLH1) based on the same missense/nonsense mutation. As a result of this 

mapping process, a total of 1158 associations/connections between 69 cancer genes were 

detected. These connections were further explored in CIRCOS (Krzywinski et al., 2009) 

to construct a genome-wide distribution map of human cancers. The 1158 associations 

between cancer genes and their positions in the human genome are present in Figure 4. 

 
Figure 3    Human cancer map (HCM). Each node corresponds to a primary cancer and a link 

between two nodes represents the presence of shared cancer genes and mutation class. 
The size of each node is proportional to the number of interconnections connected to 
that node i.e., number of distinct primary cancers connecting to it. The width of the 
link-lines reflects the number of genes linking each cancer nodes (see online version 
for colours) 
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Thereafter the distributions of the 69 associated genes in each chromosome were 

calculated (Figure 5) to show the number of implicated genes on each chromosome. It is 

shown that Chr17, Chr1, Chr15, Chr2 and Chr3 tended to contribute to cancer genes 

disproportionally compared with other chromosome, whereas Chr21 and Chr-y did not 

show any contribution to any of the cancer-associated genes. Chromosome 17 carried the 

highest number of cancer-related genes (14% of total), with chromosome X carrying the 

fewest  (1%).  The  Missense/Nonsense  Mutation  type  was  the  most  common  of  all 

mutation classes, and was detected in 22 chromosomes. Moreover, a mutation of the 

Regulatory  Mutation  type  was  detected  in  11  of  22  chromosomes.  Together  these 

mutation types were most commonly associated with cancer-pathway genes (Kanehisa 

et al., 2006). 

 
Figure 4    Genome-wide mutations, where the blocks in the outer circle indicate the particular 

chromosomes and the position of 69 genes on each chromosome. The inner 
interconnections represent the associations between two or more genes connected if 
they contribute to same cancer via the same mutation class. The colours of the 
interconnections represent the corresponding chromosome (see online version 
for colours) 
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Figure 5    The genome-wide distributions for cancer genes showing the distribution of the 

69 genes over human chromosomes (see online version for colours) 
 

 

 
3.3 Extent of agreement between primary cancer nodes on the basis of shared 

gene and mutation class in HCM 
 

The method of Choen’s Kappa was employed to quantify the agreement between two 

primary cancer nodes in the HCM. The agreement revealed a number of interesting 

relationships between cancer nodes across the HCM (Figure 6). These include: 
 

• missense/nonsense mutations (44% of the HCM) and Regulatory mutation (10% of 

the HCM) showed only low to moderate agreement between their interconnected 

nodes 
 

•    small deletions, splicing, small insertions, gross deletions and small indels (3–14% 

of the HCM) exhibited low to very high agreements 
 

•    repeat variation, complex rearrangement and cross insertion mutations (1–2% of the 

HCM) showed very low agreements between their interconnected cancer nodes. 

 
Figure 6    Agreement distributions in SM-HCM. Blue shows low agreements (<0.25), purple 

represents moderate agreements ((0.25–0.50), green reflects all high agreement 
(0.50–0.75), while red refers to the very high agreement (0.75–1). The mutations 
subclasses names are placed under each bar (see online version for colours) 
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While Missense/nonsense mutations dominate the network, in terms of type of 

interconnections, if removed could cause the network to collapse, their interconnection 

strength (k score) is low to moderate. By contract therefore, interconnections derived from 

Small deletions, splicing, small insertions, gross deletions and  small  indels  can  

influence  the  network  disproportionately  due  to  their  higher k-scores. 

Moreover, two interconnected cancer nodes (breast and ovarian cancers) had high 

k-scores for gene mutations of the splicing, small insertions and small indels type, when 

examining BRCA1, BRCA2, BRIP1, RAD51C, RAD51D, TP53. This finding, agreed with 

several studies in the literature (Welcsh and King, 2001, Grzybowska et al., 2002), show 

that germline mutation of BRCA2 and BRCA1 predispose to breast and ovarian cancer. 

Similarly, we found that brain tumours tend to be highly linked to melanoma, womb and 

bowel cancer in terms of the mutation of MLH1, CDKN2A and BRAC2, including 

splicing, small insertion, gross deletion and small indels mutations. We also found that 

melanoma and pancreatic cancer nodes were highly connected via their similar splicing 

and small insertion mutations for CDKN2A, BRAC2, which is in agreement with previous 

reports (Whelan et al., 1995, Goldstein, 2004, de Snoo et al., 2008). Melanoma also 

exhibited very high agreement with the head & neck cancer by virtue of small indels 

mutations in the CDKN2A gene, which agreed, interestingly, with a finding reported by 

Cabanillas et al. (2011). Therefore, this suggests that CDKN2A acts as a key gene in 

human cancer that its mutations are found in many distinct primary cancers (Cabanillas 

et al., 2013; Whelan et al., 1995). A similar case may be made for the BRAC2 gene, 

where shared small insertion mutation mutations are found in prostate, melanoma, 

pancreatic cancer and lung cancer (Vasen et al., 2000; Lynch et al., 2002). 
 

 
4    Conclusion 

 
From a biological perspective, our data suggests that Missense/Nonsense and Regulatory 

mutation has a disproportionately large impact on associating cancer nodes with each 

other in a HCM and GWD-MAP. Without the involvement of these two mutation classes 

the HCM would fragment, and almost 50% of cancer nodes would be disconnected. This 

then may suggest that mutations of these 2 classes may contain driver mutations in the 

associated cancers. An alternative but not mutually exclusive way of interpreting our 

finding is the significant role of Small Deletions, Splicing, Small Insertions, Gross 

Deletions, and Small Indels) in developing cancers, given their high to very high kappa 

values which are indicative of their involvement in how strongly interconnected the 

cancer nodes are. Thus, mutations of these types may be particularly deleterious as they 

would have greater impact on cancer gene connectivity in the HCM and GWD-MAP. 
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