3 research outputs found

    Structural characterisation of α-synuclein-membrane interactions and the resulting aggregation using small angle scattering

    No full text
    The presence of amyloid fibrils is a hallmark of several neurodegenerative diseases. Some amyloidogenic proteins, such as α-synuclein and amyloid β, can interact with lipids, and this interaction can strongly favor the formation of amyloid fibrils. In particular the primary nucleation step, i.e. the de novo formation of amyloid fibrils, has been shown to be accelerated by lipids. However, the exact mechanism of this acceleration is still mostly unclear. Here we use a range of scattering methods, such as dynamic light scattering (DLS) and small angle X-ray and neutron scattering (SAXS and SANS) to obtain structural information on the binding of α-synuclein to vesicles formed from negatively charged lipids and their co-assembly into amyloid fibrils. We find that the lipid vesicles do not simply act as a surface that catalyses the nucleation reaction, but that lipid molecules take an active role in the reaction. The binding of α-synuclein to the lipid vesicles immediately induces a major structural change in the lipid assembly, which leads to a break-up into small, cylindrical and disc-like lipid-protein particles. This transition can be largely reversed by temperature changes or proteolytic protein removal. Incubation of these small, cylindrical and disc-like lipid-α-synuclein particles for several hours, however, yields amyloid fibril formation, whereby the lipids are incorporated into the fibrils

    Chernobyl Accident : Assessing the Data

    Get PDF
    Most common breast cancer susceptibility variants have been identified through genome-wide association studies (GWAS) of predominantly estrogen receptor (ER)-positive disease. We conducted a GWAS using 21,468 ER-negative cases and 100,594 controls combined with 18,908 BRCA1 mutation carriers (9,414 with breast cancer), all of European origin. We identified independent associations at P < 5 × 10(-8) with ten variants at nine new loci. At P < 0.05, we replicated associations with 10 of 11 variants previously reported in ER-negative disease or BRCA1 mutation carrier GWAS and observed consistent associations with ER-negative disease for 105 susceptibility variants identified by other studies. These 125 variants explain approximately 16% of the familial risk of this breast cancer subtype. There was high genetic correlation (0.72) between risk of ER-negative breast cancer and breast cancer risk for BRCA1 mutation carriers. These findings may lead to improved risk prediction and inform further fine-mapping and functional work to better understand the biological basis of ER-negative breast cancer
    corecore