1 Identification of ten variants associated with risk of estrogen receptor negative 2 breast cancer

Roger L. Milne^{t,1,2,*}, Karoline B. Kuchenbaecker^{t,3,4}, Kyriaki Michailidou^{t,3,5}, Jonathan 3 Beesley⁶, Siddhartha Kar⁷, Sara Lindström^{8,9}, Shirley Hui¹⁰, Audrey Lemaçon¹¹, Penny 4 Soucy¹¹, Joe Dennis³, Xia Jiang⁹, Asha Rostamianfar¹⁰, Hilary Finucane^{9,12}, Manjeet K. Bolla³, Lesley McGuffog³, Qin Wang³, Cora M. Aalfs¹³, ABCTB Investigators¹⁴, Marcia 5 6 Adams¹⁵, Julian Adlard¹⁶, Simona Agata¹⁷, Shahana Ahmed⁷, Kristiina Aittomäki¹⁸, Fares Al-7 Ejeh¹⁹, Jamie Allen³, Christine B. Ambrosone²⁰, Christopher I. Amos²¹, Irene L. Andrulis^{22,23}, 8 Hoda Anton-Culver²⁴, Natalia N. Antonenkova²⁵, Volker Arndt²⁶, Norbert Arnold²⁷, Kristan J. 9 Aronson²⁸, Bernd Auber²⁹, Paul L. Auer^{30,31}, Margreet G.E.M. Ausems³², Jacopo Azzollini³³, 10 François Bacot³⁴, Judith Balmaña³⁵, Monica Barile³⁶, Laure Barjhoux³⁷, Rosa B. 11 Barkardottir^{38,39}, Myrto Barrdahl⁴⁰, Daniel Barnes³, Daniel Barrowdale³, Caroline Baynes⁷, 12 Matthias W. Beckmann⁴¹, Javier Benitez⁴²⁻⁴⁴, Marina Bermisheva⁴⁵, Leslie Bernstein⁴⁶, Yves-13 Jean Bignon⁴⁷, Kathleen R. Blazer⁴⁸, Marinus J. Blok⁴⁹, Carl Blomqvist⁵⁰, William Blot^{51,52}, 14 Kristie Bobolis⁵³, Bram Boeckx^{54,55}, Natalia V. Bogdanova^{25,56,57}, Anders Bojesen⁵⁸, Stig E. 15 Bojesen⁵⁹⁻⁶¹, Bernardo Bonanni³⁶, Anne-Lise Børresen-Dale⁶², Aniko Bozsik⁶³, Angela R. 16 Bradbury⁶⁴, Judith S. Brand⁶⁵, Hiltrud Brauch⁶⁶⁻⁶⁸, Hermann Brenner^{26,68,69}, Brigitte Bressac-17 18 de Paillerets⁷⁰, Carole Brewer⁷¹, Louise Brinton⁷², Per Broberg⁷³, Angela Brooks-Wilson^{74,75}, Joan Brunet⁷⁶, Thomas Brüning⁷⁷, Barbara Burwinkel^{78,79}, Saundra S. Buys⁸⁰, Jinyoung 19 Byun²¹, Qiuyin Cai⁵¹, Trinidad Caldés⁸¹, Maria A. Caligo⁸², Ian Campbell^{83,84}, Federico 20 Canzian⁸⁵, Olivier Caron⁷⁰, Angel Carracedo^{86,87}, Brian D. Carter⁸⁸, J. Esteban Castelao⁸⁹, 21 Laurent Castera⁹⁰, Virginie Caux-Moncoutier⁹¹, Salina B. Chan⁹², Jenny Chang-Claude^{40,93}, 22 Stephen J. Chanock⁷², Xiaoqing Chen⁶, Ting-Yuan David Cheng⁹⁴, Jocelyne Chiquette⁹⁵, 23 Hans Christiansen⁵⁶, Kathleen B.M. Claes⁹⁶, Christine L. Clarke⁹⁷, Thomas Conner⁹⁸, Don M. 24 Conroy⁷, Jackie Cook⁹⁹, Emilie Cordina-Duverger¹⁰⁰, Sten Cornelissen¹⁰¹, Isabelle 25 Coupier¹⁰², Angela Cox¹⁰³, David Cox^{104,105}, Simon S. Cross¹⁰⁶, Katarina Cuk²⁶, Julie M. 26 Cunningham¹⁰⁷, Kamila Czene⁶⁵, Mary B. Daly¹⁰⁸, Francesca Damiola³⁷, Hatef Darabi⁶⁵, 27 Rosemarie Davidson¹⁰⁹, Kim De Leeneer⁹⁶, Peter Devilee^{110,111}, Ed Dicks⁷, Orland Diez¹¹², 28 Yuan Chun Ding⁴⁶, Nina Ditsch¹¹³, Kimberly F. Doheny¹⁵, Susan M. Domchek⁶⁴, Cecilia M. 29 Dorfling¹¹⁴, Thilo Dörk⁵⁷, Isabel dos-Santos-Silva¹¹⁵, Stéphane Dubois¹¹, Pierre-Antoine 30 Dugué^{1,2}, Martine Dumont¹¹, Alison M. Dunning⁷, Lorraine Durcan^{116,117}, Miriam Dwek¹¹⁸, 31 Bernd Dworniczak¹¹⁹, Diana Eccles¹¹⁷, Ros Eeles¹²⁰, Hans Ehrencrona¹²¹, Ursula Eilber⁴⁰, 32 Bent Ejlertsen¹²², Arif B. Ekici¹²³, A. Heather Eliassen^{124,125}, EMBRACE¹⁴, Christoph 33 Engel^{126,127}, Mikael Eriksson⁶⁵, Laura Fachal⁷, Laurence Faivre^{128,129}, Peter A. Fasching^{41,130}, 34 Ulrike Faust¹³¹, Jonine Figueroa^{72,132}, Dieter Flesch-Janys^{133,134}, Olivia Fletcher¹³⁵, Henrik 35 Flyger¹³⁶, William D. Foulkes¹³⁷, Eitan Friedman^{138,139}, Lin Fritschi¹⁴⁰, Debra Frost³, Marike 36 Gabrielson⁶⁵, Pragna Gaddam¹⁴¹, Patricia A. Ganz¹⁴², Susan M. Gapstur⁸⁸, Judy Garber¹⁴³, 37 38 Vanesa Garcia-Barberan⁸¹, José A. García-Sáenz⁸¹, Mia M. Gaudet⁸⁸, Marion Gauthier-Villars⁹¹, Andrea Gehrig¹⁴⁴, GEMO Study Collaborators¹⁴, Vassilios Georgoulias¹⁴⁵, Anne-39 Marie Gerdes¹⁴⁶, Graham G. Giles^{1,2}, Gord Glendon²², Andrew K Godwin¹⁴⁷, Mark S. 40 Goldberg^{148,149}, David E. Goldgar¹⁵⁰, Anna González-Neira⁴², Paul Goodfellow¹⁵¹, Mark H. 41 Greene¹⁵², Grethe I. Grenaker Alnæs⁶², Mervi Grip¹⁵³, Jacek Gronwald¹⁵⁴, Anne Grundy¹⁵⁵, 42 Daphne Gschwantler-Kaulich¹⁵⁶, Pascal Guénel¹⁰⁰, Qi Guo⁷, Lothar Haeberle⁴¹, Eric 43 Hahnen¹⁵⁷⁻¹⁵⁹, Christopher A. Haiman¹⁶⁰, Niclas Håkansson¹⁶¹, Emily Hallberg¹⁶², Ute 44 Hamann¹⁶³, Natalie Hammell³⁴, Susan Hankinson¹⁶⁴, Thomas V.O. Hansen¹⁶⁵, Patricia 45 Harrington⁷, Steven N. Hart¹⁶², Jaana M. Hartikainen¹⁶⁶⁻¹⁶⁸, Catherine S. Healey⁷, HEBON¹⁴, 46 Alexander Hein⁴¹, Sonja Helbig⁵⁷, Alex Henderson¹⁶⁹, Jane Heyworth¹⁷⁰, Belynda Hicks¹⁷¹, 47

Peter Hillemanns⁵⁷, Shirley Hodgson¹⁷², Frans B. Hogervorst¹⁷³, Antoinette Hollestelle¹⁷⁴, 48 Maartje J. Hooning¹⁷⁴, Bob Hoover⁷², John L. Hopper², Chunling Hu¹⁰⁷, Guanmengqian 49 Huang¹⁶³, Peter J. Hulick^{175,176}, Keith Humphreys⁶⁵, David J. Hunter^{9,125}, Evgeny N. 50 Imyanitov¹⁷⁷, Claudine Isaacs¹⁷⁸, Motoki Iwasaki¹⁷⁹, Louise Izatt¹⁸⁰, Anna Jakubowska¹⁵⁴, 51 Paul James^{84,181}, Ramunas Janavicius^{181,182}, Wolfgang Janni¹⁸³, Uffe Birk Jensen¹⁸⁴, Esther 52 M. John^{185,186}, Nichola Johnson¹³⁵, Kristine Jones¹⁷¹, Michael Jones¹⁸⁷, Arja Jukkola-53 Vuorinen¹⁸⁸, Rudolf Kaaks⁴⁰, Maria Kabisch¹⁶³, Katarzyna Kaczmarek¹⁵⁴, Daehee Kang¹⁸⁹⁻¹⁹¹, 54 Karin Kast¹⁹², kConFab/AOCS Investigators¹⁴, Renske Keeman¹⁰¹, Michael J. Kerin¹⁹³, 55 Carolien M. Kets¹⁹⁴, Machteld Keupers¹⁹⁵, Sofia Khan¹⁹⁶, Elza Khusnutdinova^{45,197}, Johanna 56 I. Kiiski¹⁹⁶, Sung-Won Kim¹⁵⁶, Julia A. Knight^{198,199}, Irene Konstantopoulou²⁰⁰, Veli-Matti 57 Kosma¹⁶⁶⁻¹⁶⁸, Vessela N. Kristensen^{62,201,202}, Torben A. Kruse²⁰³, Ava Kwong²⁰⁴⁻²⁰⁶, Anne-58 Vibeke Lænkholm²⁰⁷, Yael Laitman¹³⁸, Fiona Lalloo²⁰⁸, Diether Lambrechts^{54,55}, Keren 59 Landsman²⁰⁹, Christine Lasset²¹⁰, Conxi Lazaro²¹¹, Loic Le Marchand²¹², Julie Lecarpentier³, 60 Andrew Lee³, Eunjung Lee¹⁶⁰, Jong Won Lee²¹³, Min Hyuk Lee²¹⁴, Flavio Lejbkowicz²⁰⁹, Fabienne Lesueur²¹⁵⁻²¹⁸, Jingmei Li⁶⁵, Jenna Lilyquist²¹⁹, Anne Lincoln²²⁰, Annika 61 62 Lindblom²²¹, Jolanta Lissowska²²², Wing-Yee Lo^{66,67}, Sibylle Loibl²²³, Jirong Long⁵¹, Jennifer 63 T. Loud¹⁵², Jan Lubinski¹⁵⁴, Craig Luccarini⁷, Michael Lush³, Robert J. MacInnis^{1,2}, Tom 64 Maishman^{116,117}, Enes Makalic², Ivana Maleva Kostovska²²⁴, Siranoush Manoukian³³, JoAnn 65 E. Manson²²⁵, Sara Margolin²²⁶, John W.M. Martens¹⁷⁴, Maria Elena Martinez^{227,228}, Keitaro 66 Matsuo^{229,230}, Dimitrios Mavroudis¹⁴⁵, Sylvie Mazoyer²³¹, Catriona McLean²³², Hanne Meijers-67 Heijboer²³³, Primitiva Menéndez²³⁴, Jeffery Meyer¹⁰⁷, Hui Miao²³⁵, Austin Miller²³⁶, Nicola 68 Miller¹⁹³, Gillian Mitchell^{84,181}, Marco Montagna¹⁷, Kenneth Muir^{237,238}, Anna Marie 69 Mulligan^{239,240}, Claire Mulot²⁴¹, Sue Nadesan⁵³, Katherine L. Nathanson⁶⁴, NBSC 70 Collaborators¹⁴, Susan L. Neuhausen⁴⁶, Heli Nevanlinna¹⁹⁶, Ines Nevelsteen¹⁹⁵, Dieter 71 Niederacher²⁴², Sune F. Nielsen^{59,60}, Børge G. Nordestgaard⁵⁹⁻⁶¹, Aaron Norman¹⁶², Robert 72 L. Nussbaum²⁴³, Edith Olah⁶³, Olufunmilayo I. Olopade²⁴⁴, Janet E. Olson¹⁶², Curtis 73 Olswold¹⁶², Kai-ren Ong²⁴⁵, Jan C. Oosterwijk²⁴⁶, Nick Orr¹³⁵, Ana Osorio^{43,44}, V. Shane 74 Pankratz²⁴⁷, Laura Papi²⁴⁸, Tjoung-Won Park-Simon⁵⁷, Ylva Paulsson-Karlsson²⁴⁹, Rachel 75 Peake²⁵⁰, Inge Søkilde Pedersen²⁵¹, Bernard Peissel³³, Ana Peixoto²⁵², Jose I.A. Perez²⁵³, 76 Paolo Peterlongo²⁵⁴, Julian Peto¹¹⁵, Georg Pfeiler¹⁵⁶, Catherine M. Phelan²⁵⁵, Mila 77 Pinchev²⁰⁹, Dijana Plaseska-Karanfilska²²⁴, Bruce Poppe⁹⁶, Mary E Porteous²⁵⁶, Ross 78 Prentice³⁰, Nadege Presneau¹¹⁸, Darya Prokofieva¹⁹⁷, Elizabth Pugh¹⁵, Miquel Angel 79 Pujana²⁵⁷, Katri Pylkäs^{258,259}, Brigitte Rack¹¹³, Paolo Radice²⁶⁰, Nazneen Rahman²⁶¹, 80 Johanna Rantala²⁶², Christine Rappaport-Fuerhauser¹⁵⁶, Gad Rennert^{209,263}, Hedy S. 81 Rennert²⁰⁹, Valerie Rhenius⁷, Kerstin Rhiem¹⁵⁷⁻¹⁵⁹, Andrea Richardson²⁶⁴, Gustavo C. 82 Rodriguez²⁶⁵, Atocha Romero^{81,266}, Jane Romm¹⁵, Matti A. Rookus²⁶⁷, Anja Rudolph⁴⁰, 83 Thomas Ruediger²⁶⁸, Emmanouil Saloustros²⁶⁹, Joyce Sanders²⁷⁰, Dale P. Sandler²⁷¹, 84 Suleeporn Sangrajrang²⁷², Elinor J. Sawyer²⁷³, Daniel F. Schmidt², Minouk J. 85 Schoemaker¹⁸⁷, Fredrick Schumacher¹⁶⁰, Peter Schürmann⁵⁷, Lukas Schwentner¹⁸³, 86 Christopher Scott¹⁶², Rodney J. Scott^{274,275}, Sheila Seal²⁶¹, Leigha Senter²⁷⁶, Caroline 87 Seynaeve¹⁷⁴, Mitul Shah⁷, Priyanka Sharma²⁷⁷, Chen-Yang Shen^{278,279}, Xin Sheng¹⁶⁰, 88 Hermela Shimelis¹⁰⁷, Martha J. Shrubsole⁵¹, Xiao-Ou Shu⁵¹, Lucy E Side²⁸⁰, Christian F. 89 Singer¹⁵⁶, Christof Sohn²⁸¹, Melissa C. Southey²⁸², John J. Spinelli^{283,284}, Amanda B. 90 Spurdle⁶, Christa Stegmaier²⁸⁵, Dominique Stoppa-Lyonnet⁹¹, Grzegorz Sukiennicki¹⁵⁴, 91 Harald Surowy^{78,79}, Christian Sutter²⁸⁶, Anthony Swerdlow^{187,287}, Csilla I. Szabo²⁸⁸, Rulla M. 92 Tamimi^{9,124,125}, Yen Y. Tan²⁸⁹, Jack A. Taylor^{271,290}, Maria-Isabel Tejada²⁹¹, Maria Tengström^{166,292,293}, Soo H. Teo^{294,295}, Mary B. Terry²⁹⁶, Daniel C. Tessier³⁴, Alex Teulé²⁹⁷, 93 94 Kathrin Thöne¹³⁴, Darcy L. Thull²⁹⁸, Maria Grazia Tibiletti²⁹⁹, Laima Tihomirova³⁰⁰, Marc 95

Tischkowitz^{137,301}, Amanda E. Toland³⁰², Rob A.E.M. Tollenaar³⁰³, Ian Tomlinson³⁰⁴, Diana 96 Torres^{163,305}, Martine Tranchant¹¹, Thérèse Truong¹⁰⁰, Jonathan Tryer⁷, Kathy Tucker³⁰⁶, 97 Nadine Tung³⁰⁷, Hans-Ulrich Ulmer³⁰⁸, Celine Vachon¹⁶², Christi J. van Asperen³⁰⁹, David 98 Van Den Berg¹⁶⁰, Ans M.W. van den Ouweland³¹⁰, Elizabeth J. van Rensburg¹¹⁴, Liliana Varesco³¹¹, Raymonda Varon-Mateeva³¹², Ana Vega^{313,314}, Alessandra Viel³¹⁵, Joseph 99 100 Vijai²²⁰, Daniel Vincent³⁴, Jason Vollenweider¹⁰⁷, Lisa Walker³¹⁶, Zhaoming Wang^{72,317}, Shan 101 Wang-Gohrke¹⁸³, Barbara Wappenschmidt¹⁵⁷⁻¹⁵⁹, Clarice R. Weinberg³¹⁸, Jeffrey N. 102 Weitzel⁴⁸, Camilla Wendt²²⁶, Jelle Wesseling^{101,270}, Alice S. Whittemore¹⁸⁶, Juul T. Wijnen^{111,309}, Walter Willett ^{125,319}, Robert Winqvist^{258,259}, Alicja Wolk¹⁶¹, Anna H. Wu¹⁶⁰, Lucy 103 104 Xia¹⁶⁰, Xiaohong R. Yang⁷², Drakoulis Yannoukakos²⁰⁰, Daniela Zaffaroni³³, Wei Zheng⁵¹, Bin 105 Zhu¹⁷¹, Argyrios Ziogas²⁴, Elad Ziv³²⁰, Kristin K. Zorn²⁹⁸, Manuela Gago-Dominguez^{86,227}, Arto Mannermaa¹⁶⁶⁻¹⁶⁸, Håkan Olsson⁷³, Manuel R. Teixeira^{252,321}, Jennifer Stone^{250,322}, Kenneth 106 107 Offit^{323,324}, Laura Ottini³²⁵, Sue K. Park¹⁸⁹⁻¹⁹¹, Mads Thomassen²⁰³, Per Hall⁶⁵, Alfons 108 Meindl³²⁶, Rita K. Schmutzler¹⁵⁷⁻¹⁵⁹, Arnaud Droit¹¹, Gary D. Bader^{#,10}, Paul D.P. Pharoah^{#,3,7}, 109 Fergus J. Couch^{#,107}, Douglas F. Easton^{#,3,7}, Peter Kraft^{#,9,125}, Georgia Chenevix-Trench^{#,6}, 110 Montserrat García-Closas^{#,72}, Marjanka K. Schmidt^{#,101,327}, Antonis C. Antoniou^{#,3}, Jacques 111 Simard^{#,11} 112 113 1. Cancer Epidemiology Centre, Cancer Council Victoria, Melbourne, Australia. 114 Centre for Epidemiology and Biostatistics, Melbourne School of Population and 2. 115 Global health, The University of Melbourne, Melbourne, Australia. 116 Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary 3. 117 Care, University of Cambridge, Cambridge, UK. 118 The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, 4. 119 Cambridge, UK. 120 5. Department of Electron Microscopy/Molecular Pathology, The Cyprus Institute of 121 Neurology and Genetics, Nicosia, Cyprus. 122 6. Cancer Division, QIMR Berghofer Medical Research Institute, Brisbane, Australia. 123 Centre for Cancer Genetic Epidemiology, Department of Oncology, University of 7. 124 Cambridge, Cambridge, UK. 125 Department of Epidemiology, University of Washington School of Public Health, 8. 126 Seattle, WA, USA. 127 9. Program in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan 128 School of Public Health, Boston, MA, USA. 129 10. The Donnelly Centre, University of Toronto, Toronto, Canada. 130 Genomics Center, Centre Hospitalier Universitaire de Québec Research Center, 11. 131 Laval University, Québec City, Canada. 132 12. Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA, 133 USA. 134 13. Department of Clinical Genetics, Academic Medical Center, Amsterdam, The 135 Netherlands. 136 14. A list of members and affiliations appears in the Supplementary Note. 137 Center for Inherited Disease Research (CIDR). Institute of Genetic Medicine, Johns 15. 138 Hopkins University School of Medicine, Baltimore, MD, USA. 139 Yorkshire Regional Genetics Service, Chapel Allerton Hospital, Leeds, UK. 16. 140 17. Istituto Oncologico Veneto IOV - IRCCS, Immunology and Molecular Oncology Unit, 141 Padua, Italy. 142 18. Department of Clinical Genetics, Helsinki University Hospital, University of Helsinki, 143 Helsinki, Finland, 144 19. Personalised Medicine Team, QIMR Berghofer Medical Research Institute, Brisbane, 145 Australia. 146 20. Roswell Park Cancer Institute, Buffalo, NY, USA.

4 4 7	04	Conton for Conomia Madiaina, Department of Diamadical Data Caisasa, Caisal
147	21.	Center for Genomic Medicine, Department of Biomedical Data Science, Geisel
148	22	School of Medicine, Dartmouth College, Lebanon, NH, USA.
149 150	22.	Fred A. Litwin Center for Cancer Genetics, Lunenfeld-Tanenbaum Research Institute
150 151	23.	of Mount Sinai Hospital, Toronto, Canada. Department of Molecular Genetics, University of Toronto, Toronto, Canada.
151		
	24. 25	Department of Epidemiology, University of California Irvine, Irvine, CA, USA.
153	25.	N.N. Alexandrov Research Institute of Oncology and Medical Radiology, Minsk,
154	26	Belarus.
155	26.	Division of Clinical Epidemiology and Aging Research, German Cancer Research
156 157	27.	Center (DKFZ), Heidelberg, Germany.
	27.	Department of Gynaecology and Obstetrics, University Hospital of Schleswig-
158 159	28.	Holstein, Campus Kiel, Christian-Albrechts University Kiel, Kiel, Germany.
159 160	20.	Department of Public Health Sciences, and Cancer Research Institute, Queen's
	29.	University, Kingston, ON, Canada.
161 162		Institute of Human Genetics, Hannover Medical School, Hannover, Germany.
162	30.	Cancer Prevention Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
163	31.	Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI,
165	51.	USA.
166	32.	Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The
167	52.	Netherlands.
168	33.	Unit of Medical Genetics, Department of Preventive and Predictive Medicine,
169	55.	Fondazione IRCCS (Istituto Di Ricovero e Cura a Carattere Scientifico) Istituto
170		Nazionale dei Tumori (INT), Milan, Italy.
171	34.	McGill University and Génome Québec Innovation Centre, Montréal, Canada.
172	35.	Department of Medical Oncology. University Hospital, Vall d'Hebron, Barcelona,
173	00.	Spain.
174	36.	Division of Cancer Prevention and Genetics, Istituto Europeo di Oncologia, Milan,
175		Italy.
176	37.	Bâtiment Cheney D, Centre Léon Bérard, Lyon, France.
177	38.	Laboratory of Cell Biology, Department of Pathology, Landspitali-LSH v/Hringbraut,
178		Reykjavik, Iceland.
179	39.	BMC (Biomedical Centre), Faculty of Medicine, University of Iceland, Reykjavik,
180		Iceland.
181	40.	Division of Cancer Epidemiology, German Cancer Research Center (DKFZ),
182		Heidelberg, Germany.
183	41.	Department of Gynaecology and Obstetrics, University Hospital Erlangen, Friedrich-
184		Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center
185		Erlangen-EMN, Erlangen, Germany.
186	42.	Genotyping Unit, Human Cancer Genetics Programme, Spanish National Cancer
187		Research Centre, Madrid, Spain.
188	43.	Human Genetics Group, Human Cancer Genetics Programme, Spanish National
189		Cancer Centre (CNIO), Madrid, Spain.
190	44.	Spanish Network on Rare Diseases (CIBERER), Madrid, Spain.
191	45.	Institute of Biochemistry and Genetics, Ufa Scientific Center of Russian Academy of
192		Sciences, Ufa, Russia.
193	46.	Department of Population Sciences, Beckman Research Institute of City of Hope,
194	47	Duarte, CA, USA.
195	47.	Department of Oncogenetics, Centre Jean Perrin, BP 392, Clermont-Ferrand,
196	40	France.
197	48.	Clinical Cancer Genetics, City of Hope, Duarte, California, USA.
198	49.	Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands.
199 200	50.	Department of Oncology, Helsinki University Hospital, University of Helsinki, Helsinki,
200	50.	Finland.
201		

202	51.	Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center,
203		Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine,
204		Nashville, TN, USA.
205	52.	International Epidemiology Institute, Rockville, MD, USA.
206	53.	City of Hope Clinical Cancer Genomics Community Research Network, Duarte, CA,
207 208	54	USA. Vosalius Research Contor, VIR, Louvon, Rolgium
208	54. 55.	Vesalius Research Center, VIB, Leuven, Belgium. Laboratory for Translational Genetics, Department of Oncology, University of Leuven,
203	55.	Leuven, Belgium.
211	56.	Department of Radiation Oncology, Hannover Medical School, Hannover, Germany.
212	57.	Gynaecology Research Unit, Hannover Medical School, Hannover, Germany.
213	58.	Department of Clinical Genetics, Vejle Hospital, Vejle, Denmark.
214	59.	Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen
215		University Hospital, Herley, Denmark.
216 217	60.	Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen
217	61.	University Hospital, Herlev, Denmark. Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen,
210	01.	Denmark.
220	62.	Department of Cancer Genetics, Institute for Cancer Research, Oslo University
221		Hospital Radiumhospitalet, Oslo, Norway.
222	63.	Department of Molecular Genetics, National Institute of Oncology, Budapest,
223		Hungary.
224	64.	Department of Medicine, Abramson Cancer Center, Perelman School of Medicine at
225	6E	the University of Pennsylvania, hiladelphia, PA, USA.
226 227	65.	Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.
228	66.	Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany.
229	67.	University of Tübingen, Tübingen, Germany.
230	68.	German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ),
231		Heidelberg, Germany.
232	69.	Division of Preventive Oncology, German Cancer Research Center (DKFZ) and
233		National Center for Tumor Diseases (NCT), Heidelberg, Germany.
234	70.	Gustave Roussy, Biopathology Department, Villejuif, F-94805, France.
235	71. 72.	Department of Clinical Genetics, Royal Devon & Exeter Hospital, Exeter, UK.
236 237	12.	Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA.
238	73.	Department of Cancer Epidemiology, Clinical Sciences, Lund University, Lund,
239	10.	Sweden.
240	74.	Genome Sciences Centre, BC Cancer Agency, Vancouver, BC, Canada.
241	75.	Department of Biomedical Physiology and Kinesiology, Simon Fraser University,
242		Burnaby, BC, Canada.
243	76.	Genetic Counseling Unit, Hereditary Cancer Program, IDIBGI (Institut d'Investigació
244		Biomèdica de Girona), Catalan Institute of Oncology, Girona, Spain.
245	77.	Institute for Prevention and Occupational Medicine of the German Social Accident
246 247	78.	Insurance, Institute of the Ruhr University Bochum, Bochum, Germany. Department of Obstetrics and Gynecology, University of Heidelberg, Heidelberg,
248	70.	Germany.
249	79.	Molecular Epidemiology Group, C080, German Cancer Research Center (DKFZ),
250		Heidelberg, Germany.
251	80.	Department of Medicine, Huntsman Cancer Institute, 2000 Circle of Hope, Salt Lake
252		City, UT, USA.
253	81.	Medical Oncology Department, Hospital Clínico San Carlos, Madrid, Spain.
254	82.	Section of Genetic Oncology, Dept. of Laboratory Medicine, University and University
255 256	02	Hospital of Pisa, Pisa, Italy. Research Department, Peter MacCallum Cancer Centre, East Melbourne, Australia.
200	83.	Research Department, Feler Maccalium Cancer Centre, East Melbourne, Australia.

257 258	84.	Sir Peter MacCallum, Department of Oncology, The University of Melbourne, Melbourne, Australia.
259 260	85.	Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany.
261 262 263 264	86.	Genomic Medicine Group, Galician Foundation of Genomic Medicine, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago, Servicio Galego de Saúde SERGAS, Santiago De Compostela, Spain.
265 266 267	87.	Centro de Investigación en Red de Enfermedades Raras (CIBERER) y Centro Nacional de Genotipado (CEGEN-PRB2), Universidad de Santiago de Compostela, Spain.
268	88.	Epidemiology Research Program, American Cancer Society, Atlanta, GA, USA.
269	89.	Oncology and Genetics Unit, Instituto de Investigacion Biomedica (IBI) Orense-
270		Pontevedra-Vigo, Xerencia de Xestion Integrada de Vigo-SERGAS, Vigo, Spain.
271	90.	Centre François Baclesse, 3 avenue Général Harris, Caen, France.
272	91.	Service de Génétique Oncologique, Institut Curie, Paris, France.
273	92.	1600 Divisadero Street, C415, San Francisco, CA, USA.
274	93.	University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-
275		Eppendorf, Hamburg, Germany.
276	94.	Division of Cancer Prevention and Population Sciences, Roswell Park Cancer
277		Institute, Buffalo, NY, USA.
278	95.	Unité de recherche en santé des populations, Centre des maladies du sein
279		Deschênes-Fabia, Hôpital du Saint-Sacrement, Québec, Canada.
280	96.	Center for Medical Genetics, Ghent University, Gent, Belgium.
281	97.	Westmead Institute for Medical Research, University of Sydney, Sydney, Australia.
282	98.	Huntsman Cancer Institute, 2000 Circle of Hope, Salt Lake City, UT, USA.
283 284	99. 100.	Sheffield Clinical Genetics Service, Sheffield Children's Hospital, Sheffield, UK. Cancer & Environment Group, Center for Research in Epidemiology and Population
285	100.	Health (CESP), INSERM, University Paris-Sud, University Paris-Saclay, Villejuif,
286		France.
287	101.	Division of Molecular Pathology, The Netherlands Cancer Institute - Antoni van
288		Leeuwenhoek Hospital, Amsterdam, The Netherlands.
289	102.	Unité d'Oncogénétique, CHU Arnaud de Villeneuve, Montpellier, France.
290	103.	Academic Unit of Molecular Oncology, Department of Oncology and Metabolism,
291		University of Sheffield, Sheffield, UK.
292	104.	Department of Epidemiology and Biostatistics, School of Public Health, Imperial
293		College London, London, UK.
294	105.	INSERM U1052, Cancer Research Center of Lyon, Lyon, France.
295	106.	Academic Unit of Pathology, Department of Neuroscience, University of Sheffield,
296	107	Sheffield, UK.
297 298	107.	Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
290	108.	Department of Clinical Genetics, Timothy R. Talbot Jr. Chair for Cancer Research,
300	100.	Fox Chase Cancer Center, Philadelphia, PA, USA.
301	109.	Department of Clinical Genetics, South Glasgow University Hospitals, Glasgow, UK.
302	110.	Department of Pathology, Leiden University Medical Center, Leiden, The
303		Netherlands.
304	111.	Department of Human Genetics, Leiden University Medical Center, Leiden, The
305		Netherlands.
306	112.	Oncogenetics Group, Vall d'Hebron Institute of Oncology (VHIO), Clinical and
307		Molecular Genetics Area, Vall d'Hebron University Hospital, Barcelona, Spain.
308	113.	Department of Gynecology and Obstetrics, Ludwig-Maximilians University of Munich,
309		Munich, Germany.
310	114.	Cancer Genetics Laboratory, Department of Genetics, University of Pretoria, Arcadia,
311		South Africa.

312	115.	Department of Non-Communicable Disease Epidemiology, London School of
313		Hygiene and Tropical Medicine, London, UK.
314	116.	Southampton Clinical Trials Unit, Faculty of Medicine, University of Southampton,
315	447	Southampton, UK.
316	117.	Cancer Sciences Academic Unit, Faculty of Medicine, University of Southampton,
317	110	Southampton, UK.
318	118.	Department of Biomedical Sciences, Faculty of Science and Technology, University
319 320	119.	of Westminster, London, UK. Institute of Human Genetics, University of Münster, Münster, Germany.
320 321	120.	Oncogenetics Team, The Institute of Cancer Research and Royal Marsden NHS
321	120.	Foundation Trust, London, UK.
323	121.	Department of Clinical Genetics, Lund University Hospital, Lund, Sweden.
324	122.	Department of Oncology, Rigshospitalet, Copenhagen University Hospital,
325		Copenhagen, Denmark.
326	123.	Institute of Human Genetics, University Hospital Erlangen, Friedrich-Alexander
327		University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN,
328		Erlangen, Germany.
329	124.	Channing Division of Network Medicine, Department of Medicine, Brigham and
330		Women's Hospital, Harvard Medical School, Boston, MA, USA.
331	125.	Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston,
332		MA, USA.
333	126.	Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig,
334		Leipzig, Germany.
335	127.	LIFE - Leipzig Research Centre for Civilization Diseases, University of Leipzig,
336		Leipzig, Germany
337	128.	Genetics Department, Dijon University Hospital, Dijon, France
338	129.	Oncogenetics, Centre Georges-François Leclerc, Dijon, France.
339	130.	David Geffen School of Medicine, Department of Medicine Division of Hematology
340		and Oncology, University of California at Los Angeles, Los Angeles, CA, USA.
341	131.	Institute of Medical Genetics and Applied Genomics, University of Tuebingen,
342		Germany.
343	132.	Usher Institute of Population Health Sciences and Informatics, The University of
344		Edinburgh Medical School, Edinburgh, UK.
345	133.	Institute for Medical Biometrics and Epidemiology, University Medical Center
346	101	Hamburg-Eppendorf, Hamburg, Germany.
347	134.	Department of Cancer Epidemiology, Clinical Cancer Registry, University Medical
348	405	Center Hamburg-Eppendorf, Hamburg, Germany.
349	135.	Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer
350	100	Research, London, UK.
351	136.	Department of Breast Surgery, Herlev and Gentofte Hospital, Copenhagen University
352	107	Hospital, Herlev, Denmark.
353 354	137.	Program in Cancer Genetics, Departments of Human Genetics and Oncology, McGill University, Montreal, Quebec, Canada.
355	138.	The Susanne Levy Gertner Oncogenetics Unit, Institute of Human Genetics, Chaim
356	150.	Sheba Medical Center, Ramat Gan, Israel.
357	139.	Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Israel.
358	140.	School of Public Health, Curtin University, Perth, Australia.
359	141.	Clinical Cancer Genetics Laboratory, Memorial Sloane Kettering Cancer Center, New
360		York, NY, USA.
361	142.	UCLA Schools of Medicine and Public Health, Division of Cancer Prevention &
362		Control Research, Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA.
363	143.	Cancer Risk and Prevention Clinic, Dana-Farber Cancer Institute, Boston, MA, USA.
364	144.	Centre of Familial Breast and Ovarian Cancer, Department of Medical Genetics,
365		Institute of Human Genetics, University Würzburg, Würzburg, Germany.
		, , , , ,

366 367	145.	Department of Medical Oncology, University Hospital of Heraklion, Heraklion, Greece.
368	146.	Department of Clincial Genetics, Rigshospitalet 4062, København Ø, Denmark.
369	147.	Department of Pathology and Laboratory Medicine, University of Kansas Medical
370	147.	Center, Kansas City, KS, USA.
371	148.	Department of Medicine, McGill University, Montreal, Canada.
372	149.	Division of Clinical Epidemiology, Royal Victoria Hospital, McGill University,
373	143.	Montreal, Canada.
374	150.	Department of Dermatology, Huntsman Cancer Institute, University of Utah School of
375	150.	Medicine, Salt Lake City, UT, USA.
376	151.	Department of Obstetrics and Gynecology, The Ohio State University James
377	101.	Comprehensive Cancer Center, Columbus, OH, USA.
378	152.	Clinical Genetics Branch, DCEG, NCI, NIH, Bethesda, MD, USA.
379	152.	Department of Surgery, Oulu University Hospital, University of Oulu, Oulu, Finland.
380	153.	Department of Genetics and Pathology, Pomeranian Medical University, Szczecin,
381	104.	Poland.
382	155.	Centre de Recherche du Centre Hospitalier de Université de Montréal (CHUM),
383	155.	Montréal, Québec, Canada.
384	156	Department of OB/GYN and Comprehensive Cancer Centre, Medical University of
385	156.	
386	157.	Vienna, Vienna, Austria. Center for Familial Breast and Ovarian Cancer, University Hospital of Cologne,
	157.	
387 388	158.	Cologne, Germany. Center for Integrated Oncology (CIO), University Hospital of Cologne, Cologne,
389	150.	
	150	Germany. Conter for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne
390	159.	Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne,
391	400	Germany.
392	160.	Department of Preventive Medicine, Keck School of Medicine, University of Southern
393	161	California, Los Angeles, CA, USA.
394	161.	Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
395	162.	Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA.
396	163.	Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ),
397	164	Heidelberg, Germany.
398	164.	Department of Biostatistics & Epidemiology, University of Massachusetts, Amherst,
399	165	Amherst, MA, USA. Center for Genomic Medicine, Rigshospitalet, Copenhagen University Hospital,
400	165.	
401	166	Copenhagen, Denmark.
402	166. 167	Translational Cancer Research Area, University of Eastern Finland, Kuopio, Finland.
403	167.	Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern
404	169	Finland, Kuopio, Finland.
405	168.	Imaging Center, Department of Clinical Pathology, Kuopio University Hospital,
406	400	Kuopio, Finland.
407	169.	Institute of Genetic Medicine, Centre for Life, Newcastle Upon Tyne Hospitals NHS
408	170	Trust, Newcastle upon Tyne, UK.
409	170.	School of Population Health, University of Western Australia, Perth, Australia.
410	171.	Cancer Genomics Research Laboratory (CGR), Division of Cancer Epidemiology and
411	170	Genetics, National Cancer Institute, Bethesda, MD, USA.
412	172.	Medical Genetics Unit, St George's, University of London, UK.
413	173.	Family Cancer Clinic, The Netherlands Cancer Institute - Antoni van Leeuwenhoek
414	171	hospital, Amsterdam, The Netherlands.
415	174.	Department of Medical Oncology, Family Cancer Clinic, Erasmus MC Cancer
416	175	Institute, Rotterdam, The Netherlands.
417 418	175.	Center for Medical Genetics, NorthShore University HealthSystem, Evanston, IL, USA.
418 419	176	Pritzker School of Medicine, University of Chicago, Evanston, IL, USA.
419	176. 177.	N.N. Petrov Institute of Oncology, StPetersburg, Russia.
420	1//.	N.N. TEROV MSHULE OF OHOODY, SL-FELEISDULY, RUSSIA.

421 422	178.	Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA.
423	179.	Division of Epidemiology, Center for Public Health Sciences, National Cancer Center,
424 425	180.	Tokyo, Japan. Clinical Genetics, Guy's and St. Thomas' NHS Foundation Trust, London, UK.
426	181.	Familial Cancer Centre, Peter MacCallum Cancer Centre, Melbourne, Australia.
427	182.	State Research Institute Centre for Innovative medicine, Vilnius, Lithuania.
428	183.	Department of Gynaecology and Obstetrics, University of Ulm, Ulm, Germany.
429	184.	Department of Clinical Genetics, Aarhus University Hospital, Aarhus N, Denmark.
430 431	185.	Department of Epidemiology, Cancer Prevention Institute of California, Fremont, CA, USA.
432	186.	Departments of Health Research and Policy and Biomedical Data Sciences, Stanford
433	100.	University School of Medicine, Stanford, CA, USA.
434	187.	Division of Genetics and Epidemiology, The Institute of Cancer Research, London,
435		UK.
436	188.	Department of Oncology, Oulu University Hospital, University of Oulu, Oulu, Finland.
437	189.	Department of Preventive Medicine, Seoul National University College of Medicine,
438		Seoul, Korea.
439	190.	Department of Biomedical Sciences, Seoul National University College of Medicine,
440		Seoul, Korea.
441	191.	Cancer Research Institute, Seoul National University, Seoul, Korea.
442	192.	Department of Gynecology and Obstetrics, University Hospital Carl Gustav Carus,
443		TU Dresden, Dresden, Germany.
444	193.	School of Medicine, National University of Ireland, Galway, Ireland.
445	194.	Department of Human Genetics, Radboud University Nijmegen Medical Centre,
446		Nijmegen, The Netherlands.
447	195.	Leuven Multidisciplinary Breast Center, Department of Oncology, Leuven Cancer
448		Institute, University Hospitals Leuven, Leuven, Belgium.
449	196.	Department of Obstetrics and Gynecology, Helsinki University Hospital, University of
450	407	Helsinki, Helsinki, Finland.
451	197.	Department of Genetics and Fundamental Medicine, Bashkir State University, Ufa,
452 453	198.	Russia. Brossermen Centre for Health Desearch, Lunanfold Tenenhaum Desearch Institute
453 454	190.	Prosserman Centre for Health Research, Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Canada.
455	199.	Division of Epidemiology, Dalla Lana School of Public Health, University of Toronto,
456	100.	Toronto, Canada.
457	200.	Molecular Diagnostics Laboratory, INRASTES, National Centre for Scientific
458	200.	Research "Demokritos", Athens, Greece.
459	201.	Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
460	202.	Department of Clinical Molecular Biology, Oslo University Hospital, University of
461		Oslo, Oslo, Norway.
462	203.	Department of Clinical Genetics, Odense University Hospital, Odense C, Denmark.
463	204.	Hong Kong Hereditary Breast Cancer Family Registry, Hong Kong.
464	205.	Department of Surgery, The University of Hong Kong, Hong Kong.
465	206.	Department of Surgery, Hong Kong Sanatorium and Hospital, Hong Kong.
466	207.	Department of Pathology, University Hospital of Region Zealand, division Slagelse,
467		Slagelse, Denmark.
468	208.	Genetic Medicine, Manchester Academic Health Sciences Centre, Central
469		Manchester University Hospitals NHS Foundation Trust, Manchester, UK.
470	209.	Clalit National Cancer Control Center, Haifa, Israel.
471	210.	Unité de Prévention et d'Epidémiologie Génétique, Centre Léon Bérard, Lyon,
472		France.
473	211.	Molecular Diagnostic Unit, Hereditary Cancer Program, IDIBELL (Bellvitge
474	040	Biomedical Research Institute), Catalan Institute of Oncology, Barcelona, Spain.
475	212.	University of Hawaii Cancer Center, Honolulu, HI, USA.

476 477	213.	Department of Surgery, University of Ulsan College of Medicine and Asan Medical Center, Seoul, Korea.
478	214.	Department of Surgery, Soonchunhyang University and Hospital, Seoul, Korea.
479	215.	Institut Curie, Paris, France.
480	216.	PSL Research Unviersity, Paris, France.
481	217.	Inserm, U900, Paris, France.
482	218.	Mines Paris Tech, Fontainebleau, France.
483	219.	Department of Health Sciences Research, Mayo Clinic, Scottsdale, AZ, USA.
484	220.	Clinical Genetics Research Laboratory, Dept. of Medicine, Memorial Sloan Kettering
485	220.	Cancer Center, New York, NY, USA.
486	221.	Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm,
487		Sweden.
488	222.	Department of Cancer Epidemiology and Prevention, M. Sklodowska-Curie Memorial
489		Cancer Center & Institute of Oncology, Warsaw, Poland.
490	223.	German Breast Group, Neu Isenburg, Germany.
491	224.	Research Centre for Genetic Engineering and Biotechnology "Georgi D. Efremov",
492		Macedonian Academy of Sciences and Arts, Skopje, Republic of Macedonia.
493	225.	Department of Medicine, Brigham and Women's Hospital, Harvard Medical School,
494	220.	Boston, MA, USA.
495	226.	Department of Oncology - Pathology, Karolinska Institutet, Stockholm, Sweden.
496	227.	Moores Cancer Center, University of California San Diego, La Jolla, CA, USA.
497	228.	Department of Family Medicine and Public Health, University of California San Diego,
498	220.	La Jolla, CA, USA.
499	229.	Division of Molecular Medicine, Aichi Cancer Center Research Institute, Nagoya,
500	220.	Japan.
501	230.	Department of Epidemiology, Nagoya University Graduate School of Medicine,
502	200.	Nagoya, Japan.
502	231.	Lyon Neuroscience Research Center - CRNL, INSERM U1028, CNRS UMR5292,
504	201.	University of Lyon, Lyon, France.
505	232.	Anatomical Pathology, The Alfred Hospital, Melbourne, Australia.
506	233.	Department of Clinical Genetics, VU University Medical Centre, Amsterdam, the
507	200.	Netherlands.
508	234.	Servicio de Anatomía Patológica, Hospital Monte Naranco, Oviedo, Spain.
509	235.	Saw Swee Hock School of Public Health, National University of Singapore,
510	200.	Singapore, Singapore.
511	236.	NRG Oncology, Statistics and Data Management Center, Roswell Park Cancer
512	200.	Institute, Buffalo, NY, USA.
512	237.	Institute of Population Health, University of Manchester, Manchester, UK.
514	238.	Division of Health Sciences, Warwick Medical School, Warwick University, Coventry,
515	200.	UK.
516	239.	Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto,
517	200.	Canada.
518	240.	Laboratory Medicine Program, University Health Network, Toronto, Canada.
519	240. 241.	Université Paris Sorbonne Cité, INSERM UMR-S1147, Paris, France.
520	242.	Department of Gynecology and Obstetrics, University Hospital Düsseldorf, Heinrich-
521	272.	Heine University Düsseldorf, Düsseldorf, Germany.
522	243.	513 Parnassus Ave., HSE 901E, San Francisco, CA, USA.
523	244.	Center for Clinical Cancer Genetics and Global Health, The University of Chicago,
524	► 1 ⁻ T .	Chicago, IL, USA.
525	245.	West Midlands Regional Genetics Service, Birmingham Women's Hospital
526	0.	Healthcare NHS Trust, Edgbaston, Birmingham, UK.
527	246.	Department of Genetics, University Medical Center, Groningen University,
528	- 70.	Groningen, The Netherlands.
529	247.	University of New Mexico Health Sciences Center, University of New Mexico,
530		Albuquerque, NM, USA.
000		

531	248.	Unit of Medical Genetics, Department of Biomedical, Experimental and Clinical
532	2.0.	Sciences, University of Florence, Florence, Italy.
533	249.	Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala,
534		Sweden.
535	250.	The Curtin UWA Centre for Genetic Origins of Health and Disease, Curtin University
536	054	and University of Western Australia, Perth, Australia.
537 538	251.	Section of Molecular Diagnostics, Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark.
539	252.	Department of Genetics, Portuguese Oncology Institute, Porto, Portugal.
540	253.	Servicio de Cirugía General y Especialidades, Hospital Monte Naranco, Oviedo,
541		Spain.
542	254.	IFOM, The FIRC (Italian Foundation for Cancer Research) Institute of Molecular
543		Oncology, Milan, Italy.
544	255.	Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, USA.
545	256.	South East of Scotland Regional Genetics Service, Western General Hospital,
546	057	Edinburgh, UK.
547 548	257.	ProCURE, Catalan Institute of Oncology, IDIBELL (Bellvitge Biomedical Research Institute), Barcelona, Spain.
548 549	258.	Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational
550	200.	Medicine Research Unit, Biocenter Oulu, University of Oulu, Oulu, Finland.
551	259.	Laboratory of Cancer Genetics and Tumor Biology, Northern Finland Laboratory
552		Centre Oulu, Oulu, Finland.
553	260.	Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of
554		Preventive and Predictive Medicine, Fondazione IRCCS (Istituto Di Ricovero e Cura
555		a Carattere Scientifico) Istituto Nazionale dei Tumori (INT), Milan, Italy.
556	261.	Section of Cancer Genetics, The Institute of Cancer Research, London, UK.
557	262.	Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.
558	263.	Carmel Medical Center and B. Rappaport Faculty Of Medicine-Technion, Haifa,
559 560	264.	Israel. Brigham and Women's Hospital, Dana-Farber Cancer Institute, Boston, MA USA.
561	265.	Division of Gynecologic Oncology, NorthShore University HealthSystem, University
562	200.	of Chicago, Evanston, IL, USA.
563	266.	Medical Oncology Department, Hospital Universitario Puerta de Hierro, Madrid,
564		Spain.
565	267.	Department of Epidemiology. Netherlands Cancer Institute, Amsterdam, The
566		Netherlands.
567	268.	Institute of Pathology, Staedtisches Klinikum Karlsruhe, Karlsruhe, Germany.
568	269.	Hereditary Cancer Clinic, University Hospital of Heraklion, Heraklion, Greece.
569	270.	Department of Pathology, The Netherlands Cancer Institute - Antoni van
570 571	271.	Leeuwenhoek hospital, Amsterdam, The Netherlands. Epidemiology Branch, National Institute of Environmental Health Sciences, NIH,
572	271.	Research Triangle Park, NC, USA.
573	272.	National Cancer Institute, Bangkok, Thailand.
574	273.	Research Oncology, Guy's Hospital, King's College London, London, UK.
575	274.	Division of Molecular Medicine, Pathology North, John Hunter Hospital, Newcastle,
576		Australia.
577	275.	Discipline of Medical Genetics, School of Biomedical Sciences and Pharmacy,
578		Faculty of Health, University of Newcastle, Callaghan, Australia.
579	276.	Clinical Cancer Genetics Program, Division of Human Genetics, Department of
580		Internal Medicine, The Comprehensive Cancer Center, The Ohio State University,
581 582	277.	Columbus, USA. Department of Medicine, Kansas Medicial Center, Kansas City, KS, USA.
583	277. 278.	School of Public Health, China Medical University, Taichung, Taiwan.
584	279.	Taiwan Biobank, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.

585 586	280.	North East Thames Regional Genetics Service, Great Ormond Street Hospital for Children NHS Trust, London, UK.
587	281.	National Center for Tumor Diseases, University of Heidelberg, Heidelberg, Germany.
588	282.	Department of Pathology, The University of Melbourne, Melbourne, Australia.
589	283.	Cancer Control Research, BC Cancer Agency, Vancouver, BC, Canada.
590	203. 284.	School of Population and Public Health, University of British Columbia, Vancouver,
	204.	
591	205	BC, Canada.
592	285.	Saarland Cancer Registry, Saarbrücken, Germany.
593	286.	Institute of Human Genetics, University Hospital Heidelberg, Heidelberg, Germany.
594	287.	Division of Breast Cancer Research, The Institute of Cancer Research, London, UK.
595	288.	National Human Genome Research Institute ,National Institutes of Health, Bethesda,
596	000	MD, USA.
597	289.	Dept of OB/GYN and Comprehensive Cancer Center, Medical University of Vienna,
598		Vienna, Austria.
599	290.	Epigenetic and Stem Cell Biology Laboratory, National Institute of Environmental
600	004	Health Sciences, NIH, Research Triangle Park, NC, USA.
601	291.	Molecular Genetics Laboratory, Clinical Genetics Service, Cruces University
602		Hospital. BioCruces Health Research Institute, Barakaldo, Spain.
603	292.	Cancer Center, Kuopio University Hospital, Kuopio, Finland.
604	293.	Institute of Clinical Medicine, Oncology, University of Eastern Finland, Kuopio,
605		Finland.
606	294.	Cancer Research Malaysia, Subang Jaya, Selangor, Malaysia.
607	295.	Breast Cancer Research Unit, Cancer Research Institute, University Malaya Medical
608		Centre, Kuala Lumpur, Malaysia.
609	296.	Department of Epidemiology, Mailman School of Public Health, Columbia University,
610		New York, NY, USA.
611	297.	Genetic Counseling Unit, Hereditary Cancer Program, IDIBELL (Bellvitge Biomedical
612		Research Institute), Catalan Institute of Oncology, Barcelona, Spain.
613	298.	Magee-Womens Hospital, University of Pittsburgh School of Medicine, Pittsburgh,
614		PA, USA.
615	299.	Ospedale di Circolo ASST Settelaghi, Varese, Italy.
616	300.	Latvian Biomedical Research and Study Centre, Riga, Latvia.
617	301.	Department of Medical Genetics, Addenbrooke's Treatment Centre, Addenbrooke's
618		Hosptital, Cambridge, UK.
619	302.	Department of Molecular Virology, Immunology and Medical Genetics,
620		Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
621	303.	Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands.
622	304.	Wellcome Trust Centre for Human Genetics and Oxford NIHR Biomedical Research
623		Centre, University of Oxford, Oxford, UK.
624	305.	Institute of Human Genetics, Pontificia Universidad Javeriana, Bogota, Colombia.
625	306.	Hereditary Cancer Clinic, Department of Medical Oncology, Prince of Wales Hospital,
626		Randwick, Australia.
627	307.	Department of Medical Oncology, Beth Israel Deaconess Medical Center, MA, USA.
628	308.	Frauenklinik der Stadtklinik Baden-Baden, Baden-Baden, Germany.
629	309.	Department of Clinical Genetics, Leiden University Medical Center, Leiden, The
630		Netherlands.
631	310.	Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The
632		Netherlands.
633	311.	Unit of Hereditary Cancer, Department of Epidemiology, Prevention and Special
634		Functions, IRCCS (Istituto Di Ricovero e Cura a Carattere Scientifico) AOU San
635		Martino - IST Istituto Nazionale per la Ricerca sul Cancro, largo Rosanna Benzi 10,
636		16132 Genoa, Italy.
637	312.	Institute of Human Genetics, Campus Virchov Klinikum, Charite Berlin, Germany.

- 638 313. Fundación Pública Galega de Medicina Xenómica. Servizo Galego de Saúde 639 (SERGAS), Instituto de Investigaciones Sanitarias (IDIS), Santiago de Compostela, 640 Spain. 641 314. Grupo de Medicina Xenómica, Centro de Investigación Biomédica en Red de 642 Enfermedades Raras (CIBERER), Universidade de Santiago de Compostela (USC), 643 Santiago de Compostela, Spain. 644 315. Unit of Functional onco-genomics and genetics, CRO Aviano, National Cancer 645 Institute, Via Franco Gallini 2, 33081 Aviano (PN), Italy. 646 316. Oxford Regional Genetics Service, Churchill Hospital, Oxford, UK. 647 Department of Computational Biology, St. Jude Children's Research Hospital, 317. 648 Memphis, TN, USA. Biostatistics and Computational Biology Branch, National Institute of Environmental 649 318. 650 Health Sciences, NIH, Research Triangle Park, NC, USA. 651 319. Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, 652 USA. 653 320. Department of Medicine, Institute for Human Genetics, UCSF Helen Diller Family 654 Comprehensive Cancer Center, University of California San Francisco, San 655 Francisco, CA, USA. 656 321. Biomedical Sciences Institute (ICBAS), University of Porto, Porto, Portugal. 657 322. Department of Obstetrics and Gynaecology, University of Melbourne and the Royal 658 Women's Hospital, Melbourne, Australia. 659 323. Clinical Genetics Research Lab, Cancer Biology and Genetics Program, Sloan 660 Kettering Institute, New York, NY, USA 661 324. Clinical Genetics Service, Department of Medicine, Memorial Sloan-Kettering Cancer 662 Center, New York, NY, USA. 663 325. Department of Molecular Medicine, University La Sapienza, c/oPoliclinico Umberto I, 664 Rome. Italy. 665 326. Division of Gynaecology and Obstetrics, Technische Universität München, Munich, 666 Germany. 667 327. Division of Psychosocial Research and Epidemiology, The Netherlands Cancer 668 Institute - Antoni van Leeuwenhoek hospital, Amsterdam, The Netherlands. ⁺Co-first authorship 669 [#]Co-senior authorship 670
- *Correspondence to: Roger L. Milne, Cancer Epidemiology Centre, Cancer Council
- Victoria, Melbourne, Australia; E-mail: <u>roger.milne@cancervic.org.au</u>.
- 673
- 674

675 Most common breast cancer susceptibility variants have been identified 676 through genome-wide association studies (GWASs) of predominantly estrogen receptor (ER)-positive disease¹. We conducted a GWAS using 21,468 ER-677 negative cases and 100.594 controls combined with 18,908 BRCA1 mutation 678 679 carriers (9,414 with breast cancer), all of European origin. We identified independent associations at P<5x10⁻⁸ with 10 variants at nine novel loci. At 680 P<0.05, we replicated associations with 10 of 11 variants previously reported in 681 682 ER-negative or BRCA1 mutation carrier GWASs, and observed consistent 683 associations with ER-negative disease for 105 susceptibility variants identified 684 by other breast cancer GWASs. These 125 variants explain approximately 16% 685 of the familial risk of this breast cancer subtype. There was high genetic 686 correlation (0.72) between risk of ER-negative breast cancer and breast cancer 687 risk for BRCA1 carriers. These findings will likely lead to improved risk 688 prediction and inform further fine-mapping and functional work to better 689 understand the biological basis of ER-negative breast cancer.

690 GWASs have identified 107 single nucleotide polymorphisms (SNPs) that are 691 independently associated with breast cancer risk²⁻³². Association studies focused on 692 ER-negative disease, or *BRCA1* mutation carriers, who are more likely to develop

693 ER-negative disease (70-80% of cases)³³, have identified 11 of these

694 SNPs^{3,9,12,19,29,30}. We aimed to discover additional ER-negative breast cancer

695 susceptibility variants by performing a GWAS in women of European origin.

696 New genotyping data were generated for 9,655 ER-negative cases and 45,494 697 controls from 68 Breast Cancer Association Consortium (BCAC) studies and 15,566 698 BRCA1 mutation carriers (7,784 with breast cancer) from 58 Consortium of 699 Investigators of Modifiers of BRCA1/2 (CIMBA) studies (Supplementary Tables 1 700 and 2) using the Illumina OncoArray beadchip, a 570K SNP custom array with genome-wide coverage³⁴. Imputation was used to derive estimated genotypes for 701 702 ~21M SNPs, using the 1000 Genomes Project (Phase 3) as reference; ~11.5M of 703 those with imputation r^2 >0.3 and minor allele frequency (MAF)>0.005 were included 704 in further analyses. For BCAC data, we estimated per-allele odds ratios (ORs) using 705 logistic regression, adjusting for country and principal components. For CIMBA data, 706 we estimated per-allele hazard ratios (HR) using a retrospective cohort analysis framework, modelling time to breast cancer and stratifying on country, Ashkenazi 707 708 Jewish origin and birth cohort^{35,36} (see Online Methods). These analyses were also 709 applied to an independent set of previously generated data from other genome-wide 710 genotyping of additional European participants in 44 BCAC studies (11,813 ERnegative cases and 55,100 controls)^{9,12,16,20,37,38} and 54 CIMBA studies (3,342 711 712 BRCA1 mutation carriers, 1,630 with breast cancer) (Supplementary Tables 1 and 713 2). Fixed-effects meta-analysis was used to combine results across genotyping initiatives within consortia and, assuming that the OR and HR estimates approximate 714 the same underlying relative risk, across consortia³⁹. 715

Results from the combined meta-analysis are summarised in Supplementary Figure
There was minimal inflation of test statistics (lambda1000=1.004; Supplementary
Figure 2). We identified 10 variants at nine novel loci that were independently
associated with risk of ER-negative breast cancer at P<5x10⁻⁸ (Table 1;
Supplementary Table 3; Supplementary Figures 3-10). Two independent signals
were observed within 12kb at 11q22.3, for rs74911261 (MAF=0.02) and rs11374964
(MAF=0.42); OR estimates and statistical significance were largely unchanged when

each variant was adjusted for the other (Supplementary Table 4). The association with 8p23.3-rs66823261 was not observed for *BRCA1* mutation carriers (P=0.32, Pheterogeneity=0.030).

For each of these 10 novel signals, we identified candidate causal SNPs 726 analytically^{40,41} (see Online Methods) and combined multiple sources of *in silico* 727 functional annotation from public databases⁴²⁻⁵² to identify likely functional variants 728 729 and target genes. Results are summarised in Supplementary Table 5 (including 730 UCSC Genome Browser links; see also Supplementary Note), Figure 1 and 731 Supplementary Figures 3-10 (data sources in Supplementary Table 6). Many 732 candidate causal SNPs lie in predicted regulatory regions and are associated with 733 expression of nearby genes in blood or other tissues. At 2p23, the predicted target genes include ADCY3 and NCOA1 (Supplementary Figure 3). At 6g23.1 734 (Supplementary Figure 4), the most plausible target gene is L3MBTL3⁵³. A predicted 735 736 target at 8g24.13 is FBXO32, which is expressed in ER-negative HMECs but not ER-737 positive MCF7 breast cancer cells (Supplementary Figure 6) and has a known role in cancer cachexia⁵⁴. At 11g22.3 (Figure 1), a predicted target gene of common risk-738 associated variants is $NPAT^{55}$. The rarer SNPs underlying the other 11g22.3 signal 739 740 are predicted to target ATM, a known breast cancer susceptibility gene⁵⁶. Three rare 741 coding variants (MAF < 0.03) in ATM, NPAT and KDELC2, are also among the 742 candidate causal SNPs at this locus. At 16p13, predicted target genes include 743 ADCY9 and CREBBP (Supplementary Figure 7). At 19q12 (Supplementary Figure 744 10), a potential target gene encodes cyclin E1 which is involved in cell cycle control and phosphorylation of NPAT⁵⁷. 745

746 Expression QTL associations were assessed between each candidate causal variant 747 and genes within 1Mb using 79 ER-negative breast tumours from TCGA and 135 normal breast tissue samples from METABRIC⁵⁸⁻⁶⁰. The strongest associations 748 identified were 6q23.1-rs6569648-L3MBTL3 (P=4.3x10⁻⁶) and 18q12.1-rs12965632-749 CDH2 (P=1.0x10⁻⁴), both in METABRIC (Supplementary Table 5). SNP rs6569648 750 751 was the top cis-eQTL (of all imputed variants within 1 Mb) for L3MBTL3 while the pvalue for the rs12965632-CDH2 eQTL was within two orders of magnitude of the top 752 cis-eQTLs for this gene (Supplementary Figures 11-12). 753

For 10 of the 11 variants previously identified through GWASs of ER-negative 754 disease or overall disease in *BRCA1* mutation carriers^{3,9,12,18,19,30,31}, or reported as 755 more strongly associated with ER-negative breast cancer²⁹, associations with ER-756 757 negative disease were replicated (P<0.05) using OncoArray data from BCAC, which does not overlap with any of the discovery studies (Table 2). Effect sizes were 758 759 generally similar to those originally reported. Using all available CIMBA data, six of these 11 variants were associated with breast cancer risk (P<0.05) for BRCA1 760 mutation carriers (Table 2). No evidence of association was observed for 20g11-761 rs2284378¹² in either BCAC or CIMBA (P≥0.46). 762

Based on estimated ORs using BCAC data for all cases with known ER status
(16,988 ER-negative; 65,275 ER-positive), all 10 new and 10 previously reported
and replicated ER-negative disease susceptibility SNPs were more strongly
associated with risk of ER-negative than ER-positive subtype (P-heterogeneity<0.05,
except for novel hit 19p13.2-rs322144; Supplementary Table 7). Two variants
(1q32.1-rs4245739 and 19p13.11-rs67397200) were not associated with ER-positive
disease. For four variants (11q22.3- rs11374964, 11q22.3-rs74911261, 1q32.1-

rs6678914 and 2p23.2-rs4577244), the risk-associated allele for ER-negative disease was associated with reduced risk of ER-positive disease (P<0.05).

For these 20 ER-negative breast cancer susceptibility SNPs, we also assessed 772 associations by triple-negative (TN) status (negative for ER, progesterone receptor 773 774 and HER2; Table 3), tumour grade (Table 4) and age at diagnosis (Supplementary 775 Table 8) using BCAC data only. Five, including the novel susceptibility variants 776 11q22.3-rs11374964 and 11q22.3-rs74911261, were more strongly associated with 777 risk of both TN and higher-grade disease (P<0.05), although after adjustment for TN 778 status, heterogeneity by grade was observed only for 11g22.3-rs74911261 and 779 1q32.1-rs4245739 (P<0.05). For 2p23.3-rs4577244, heterogeneity was observed for 780 grade only, while 6q25.2-rs2747652 was more strongly associated with risk of other 781 (non-TN) ER-negative breast cancer subtypes (P<0.05). At younger ages, associations appeared to be stronger for two variants (5p15.33-rs10069690 and 782 783 19p13.11-rs67397200), and weaker for one (6q25.2-rs2747652) (P<0.05). 784 Elsewhere we report 65 novel susceptibility loci for overall breast cancer¹. Three of

785 these overlap within 500kb with the novel ER-negative disease-associated loci 786 reported here (variants 2p23.3-rs200648189, 6q23.1-rs6569648 and 8q24.13-787 rs17350191). We assessed associations with risk of ER-negative disease, and with 788 risk of overall breast cancer for BRCA1 mutation carriers, for SNPs at the remaining 789 62 loci, as well as for the 96 previously reported breast cancer susceptibility variants 790 that were not ER-negative specific. Of these 158 SNPs, 105 were associated (P<0.05) with risk of ER-negative breast cancer, and 24 with risk for BRCA1 791 792 mutation carriers (Supplementary Tables 9-10). Results for BRCA2 mutation carriers 793 are presented in Supplementary Table 11.

Pathway analysis based on mapping each SNP to the nearest gene was performed 794 using summary association statistics from the meta-analysis of BCAC and CIMBA 795 data combined⁶¹⁻⁶⁴ (see Online Methods). This identified several pathways 796 797 implicated in ER-negative disease (enrichment score [ES]≥0.41; Supplementary 798 Figure 13; Supplementary Tables 12-13), including a subset that was not enriched in 799 susceptibility to ER-positive disease (ES<0; Supplementary Table 14). One of the 800 latter subsets was the adenylate cyclase (AC) activating pathway (ES=0.62; 801 Supplementary Figure 14). Two of the predicted target genes for the 10 novel ER-802 negative breast cancer susceptibility variants, based on the eQTL analysis (Supplementary Table 5), ADCY3 (P[TCGA]=6.7x10⁻³] and ADCY9 803 $(P[METABRIC]=1.3x10^{-4})$, are part of this pathway, and their association signals 804 805 were critical to the elevated ES observed (Supplementary Figure 13). ADCY9 is stimulated by β2 adrenergic receptor (β2AR) signalling⁶⁵ in ER-negative breast 806 807 cancer⁶⁶, which in turn drives AC-cAMP signalling, including for example mitogenic 808 signalling through β -arrestin-Src-ERK⁶⁷. 809

810 To further explore the functional properties of the genome that contribute to ERnegative breast cancer heritability, we conducted a partitioned heritability analysis 811 using linkage disequilibrium (LD) score regression⁶⁸. Considering 52 "baseline" 812 genomic features, we observed the greatest enrichment for super-enhancers (2.5-813 814 fold, $p=2x10^{-7}$) and the H3K4me3 histone mark (2.4-fold, p=0.0005), with 33% 815 depletion (p=0.0002) observed for repressed regions (Supplementary Table 15). No 816 differences in enrichment for these features were observed between susceptibility to ER-negative and ER-positive breast cancer, but baseline genomic features are not 817

specific to cell type⁶⁸. The estimated correlation between ER-negative and ER-positive breast cancer based on ~1M common genetic variants^{69,70} was 0.60
(standard error [SE], 0.03) indicating that, although these two breast cancer
subtypes have a shared genetic component, a substantial proportion is distinct. The
estimated correlation between ER-negative disease in the general population and
overall breast cancer for *BRCA1* mutation carriers was 0.72 (SE, 0.11).

824

825 In summary, in this study of women of European origin, we have identified 10 novel 826 susceptibility variants for ER-negative breast cancer and replicated associations with 827 ER-negative disease for 10 SNPs identified by previous GWASs. Most of these were 828 not associated, or more weakly associated, with ER-positive disease, consistent with 829 the findings from pathway and partitioned heritability analyses showing that ER-830 negative breast cancer has a partly distinct genetic aetiology. We also observed 831 consistent associations with ER-negative disease for a further 105 overall breast 832 cancer susceptibility SNPs. Together, these 125 variants explain ~14% of an 833 assumed 2-fold increased risk of developing ER-negative disease for the first degree 834 female relatives of women affected with this subtype (the newly identified SNPs 835 explain \sim 1.5%); Supplementary Table 16) and \sim 40% of the estimated familial risk 836 that is attributable to all variants imputable from the Oncoarray (see Online 837 Methods). We have also identified nine novel breast cancer susceptibility variants for BRCA1 mutation carriers and confirmed associations for a further 30 previously 838 839 reported SNPs; these 39 variants explain ~8% of the variance in polygenic risk for 840 carriers of these mutations (Supplementary Table 17). However, the lower number of 841 BRCA1 risk-associated variants may merely be a consequence of the smaller 842 sample size, since the genetic correlation with ER-negative breast cancer is high. These findings will likely inform improved risk prediction, both for the general 843 population and for BRCA1 mutation carriers^{30,71,72}. Further investigation is required 844 845 for other populations of non-European origin. Fine-mapping and functional studies 846 should lead to a better understanding of the biological basis of ER-negative breast cancer, and perhaps inform the design of more effective preventive interventions, 847 848 early detection and treatments for this disease.

849

850 Data availability

A subset of the data that support the findings of this study will be made publically

available via dbGAP (<u>www.ncbi.nlm.nih.gov/gap</u>, contact the corresponding author

- 853 for details). The complete dataset will not be made publically available due to
- restraints imposed by the ethics committees of individual studies; requests for further
- 855 data can be made to the corresponding author or the BCAC
- 856 (http://bcac.ccge.medschl.cam.ac.uk/) and CIMBA
- 857 (<u>http://cimba.ccge.medschl.cam.ac.uk/</u>) Data Access Coordination Committees.

858

859

860 Acknowledgements

- 861 Genotyping of the OncoArray was funded by the Government of Canada through
- 62 Genome Canada and the Canadian Institutes of Health Research (GPH-129344), the
- 863 Ministère de l'Économie, de la Science et de l'Innovation du Québec through Genome
- 864 Québec, the Quebec Breast Cancer Foundation for the PERSPECTIVE project, the US

865 National Institutes of Health (NIH) [1 U19 CA 148065 for the Discovery, Biology and 866 Risk of Inherited Variants in Breast Cancer (DRIVE) project and X01HG007492 to the Center for Inherited Disease Research (CIDR) under contract number 867 868 HHSN268201200008I], Cancer Research UK [C1287/A16563], Odense University 869 Hospital Research Foundation (Denmark), the National R&D Program for Cancer 870 Control - Ministry of Health & Welfare (Republic of Korea) [1420190], the Italian 871 Association for Cancer Research [AIRC, IG16933], the Breast Cancer Research 872 Foundation, the National Health and Medical Research Council (Australia) and German 873 Cancer Aid [110837]. 874 Genotyping of the iCOGS array was funded by the European Union [HEALTH-F2-875 2009-223175], Cancer Research UK [C1287/A10710, C1287/A10118, C12292/A11174], NIH grants (CA128978, CA116167, CA176785) and Post-Cancer 876 877 GWAS initiative (1U19 CA148537, 1U19 CA148065 and 1U19 CA148112 - the 878 GAME-ON initiative), an NCI Specialized Program of Research Excellence (SPORE) 879 in Breast Cancer (CA116201) the Canadian Institutes of Health Research (CIHR) for 880 the CIHR Team in Familial Risks of Breast Cancer, the *Ministère de l'Économie*, 881 Innovation et Exportation du Québec (#PSR-SIIRI-701), Komen Foundation for the 882 Cure, the Breast Cancer Research Foundation and the Ovarian Cancer Research 883 Fund. 884 885 Combining the GWAS data was supported in part by NIH Cancer Post-Cancer GWAS 886 initiative [1 U19 CA 148065] (DRIVE, part of the GAME-ON initiative). LD score 887 regression analysis was supported by CA194393. 888 BCAC is funded by Cancer Research UK [C1287/A16563] and by the European Union 889 via its Seventh Framework Programme [HEALTH-F2-2009-223175, (COGS)] and 890 Horizon 2020 Research & Innovation Programme [633784 (B-CAST); 634935 891 (BRIDGES)]. CIMBA is funded by Cancer Research UK [C12292/A20861 and 892 C12292/A11174]. We thank all the individuals who took part in these studies and all the researchers, 893 894 clinicians, technicians and administrative staff who have enabled this work to be carried 895 out.

896 For a full description of funding and acknowledgments, see the Supplementary Note.

897

898 Author Contributions

Writing group: R.L.M., K.B.K, K.Michailidou, J.Beesley, S.Kar, S.Lindström, S.Hui.,
G.D.B., P.D.P.P., F.J.C., D.F.E., P.K., G.CT., M.GC., M.K.S., A.C.A., J.Simard.

- 901 Conceived and coordinated the synthesis of the Oncoarray: D.F.E., A.C.A., J.
- 902 Simard, C.I.A., J.Byun, S.J.C., E.D., D.J.H., A.Lee, P.D.P.P., J.T., Z.W.
- 903 OncoArray genotyping: M.A., A.C.A., S.E.B., M.K.B., F.B., G.CT., J.M.C., K.F.D.,
- 904 D.F.E., N.Hammell, B.Hicks, K.J., C.Luccarini, L.M, J.M., E.P., J.Romm, M.K.S.,
- 905 X.S., J.Simard., P.Soucy, D.C.T., D.V., J.Vollenweider, L.X., B.Z.

- 906 Oncoarray genotype calling and quality control: X.C., J.D., E.D., D.F.E., K.B.K,
- 907 J.Lecarpentier, A.Lee, M.Lush.
- Database management: D.Barrowdale., M.K.B., M.L., L.McG., Q.W., R.Keeman,M.K.S.

910 Statistical analysis: K.B.K, K.Michailidou, S.Hui, S.Kar, X.J., A.Rostamianfar,

- 911 H.Finucane, S.Lindström, D.Barnes, P.K., P.D.P.P., G.D.B., R.L.M., A.C.A., D.F.E.
- Bioinformatic analysis: J.Beesley, P.Soucy, A.Lemaçon, D.Barnes, F.AE. A.D., J.Simard, G.CT.
- 914 Provided DNA samples and/or phenotypic data: ABCTB.I., C.M.A., J.Adlard,
- 915 S.Agata, S.Ahmed, J.Allen, K.A., C.B.A., I.L.A., H.AC., N.N.A., A.C.A., V.A., N.A.,
- 916 K.J.A., B.A., P.L.A., M.G.E.M.A., J.Azzollini, J.Balmaña, M.Barile, L.Barjhoux,
- 917 R.B.B., M.Barrdahl, D.Barnes, D. Barrowdale, C.Baynes, M.W.B., J.Beesley,
- J.Benitez, M.Bermisheva, L.Bernstein, YJ.B., K.R.B., M.J.B., C.Blomqvist, W.B.,
- 919 K.B., B.Boeckx, N.V.B., A.Bojesen, S.E.B., M.K.B., B.Bonanni, A.Bozsik, A.R.B.,
- 920 J.S.B., H.Brauch, H.Brenner, B.BdP., C.Brewer, L.Brinton, P.B., A.BW., J.Brunet,
- 921 T.B., B.Burwinkel, S.S.B., AL.BW., Q.C., T.Caldés, M.A.C., I.Campbell, F.C., O.C.,
- 922 A.Carracedo, B.D.C., J.E.C., L.C., V.CM., S.B.C., J.CC., S.J.C., X.C., G.CT.,
- 923 TYD.C., J.Chiquette, H.C., K.B.M.C., C.L.C., NBCS.C., T.Conner, D.M.C., J.Cook,
- 924 E.CD., S.C., F.J.C., I.Coupier, D.C., A.Cox, S.S.C., K.Cuk, K.Czene, M.B.D., F.D.,
- 925 H.D., R.D., K.D., J.D., P.D., O.D., YC.D., N.D., S.M.D., C.M.D., S.D., PA.D.,
- 926 M.Dumont, A.M.D., L.D., M.Dwek, B.D., T.D., EMBRACE, D.F.E., D.E., R.E.,
- 927 H.Ehrencrona, U.E., B.E., A.B.E., A.H.E., C.E., M.E., L.Fachal, L.Faivre, P.A.F.,
- 928 U.F., J.F., D.FJ., O.F., H.Flyger, W.D.F., E.F., L.Fritschi, D.F., GEMO.S.C.,
- 929 M.Gabrielson, P.Gaddam, M.GD., P.A.G., S.M.G., J.Garber, V.GB., M.GC., J.A.GS.,
- 930 M.M.G., M.GV., A.Gehrig, V.G., AM.G., G.G.G., G.G., A.KG., M.S.G., D.E.G., A.GN.,
- 931 P.Goodfellow, M.H.G., G.I.GA., M.Grip, J.Gronwald, A.Grundy, D.GK., Q.G.,
- 932 P.Guénel, HEBON, L.H., E.Hahnen, C.A.H., P.Hall, E.Hallberg, U.H., S.Hankinson,
- 933 T.V.O.H., P.Harrington, S.N.H., J.M.H., C.S.H., A.Hein, S.Helbig, A.Henderson, J.H.,
- 934 P.Hillemanns, S.Hodgson, F.B.H., A.Hollestelle, M.J.H., B.Hoover, J.L.H., C.H.,
- 935 G.H., P.J.H., K.H., D.J.H., N.Håkansson, E.N.I., C.I., M.I., L.I., A.J., P.J., R.J., W.J.,
- 936 UB.J., E.M.J., N.J., M.J., A.JV., R.Kaaks, M.Kabisch, K.Kaczmarek, D.K., K.Kast,
- 937 R.Keeman, M.J.K., C.M.K., M.Keupers, S.Khan, E.K., J.I.K., J.A.K., I.K., V.K., P.K.,
- 938 V.N.K., T.A.K., K.B.K., A.K., Y.L., F.Lalloo, K.L., D.L., C.Lasset, C.Lazaro, L.IM.,
- 939 J.Lecarpentier, M.Lee, A.Lee, E.L., J.Lee, F.Lejbkowicz, F.Lesueur, J.Li, J.Lilyquist,
- 940 A.Lincoln, A.Lindblom, S.Lindström, J.Lissowska, WY.L., S.Loibl, J.Long, J.T.L.,
- 941 J.Lubinski, C.Luccarini, M.Lush, AV.L., R.J.M., T.M., E.M., I.MK., A.Mannermaa,
- 942 S.Manoukian, J.E.M., S.Margolin, J.W.M.M., ME.M., K.Matsuo, D.M., S.Mazoyer,
- 943 L.M., C.McLean, H.MH., A.Meindl, P.M., H.M., K.Michailidou, A.Miller, N.M., R.L.M.,
- 944 G.M., M.M., K.Muir, A.M.M., C.Mulot, S.N., K.L.N., S.L.N., H.N., I.N., D.N., S.F.N.,
- 945 B.G.N., A.N., R.L.N., K.Offit, E.O., O.I.O., J.E.O., H.O., C.O., K.Ong, J.C.O., N.O.,
- A.O., L.O., VS.P., L.P., S.K.P., TW.PS., Y.PK., R.Peake, IS.P., B.Peissel, A.P.,

- 947 J.I.A.P., P.P., J.P., G.P., P.D.P.P., C.M.P., M.P., D.PK., B.Poppe, M.EP., R.Prentice,
- 948 N.P., D.P., MA.P., K.P., B.R., P.R., N.R., J.Rantala, C.RF., H.S.R., G.R., V.R., K.R.,
- 949 A.Richardson, G.C.R., A.Romero, M.A.R., A.Rudolph, T.R., E.S., J.Sanders, D.P.S.,
- 950 S.Sangrajrang, E.J.S., D.F.S., M.K.S., R.K.S., M.J.Schoemaker, F.S., L.Schwentner,
- 951 P.Schürmann, C.Scott, R.J.S., S.Seal, L.Senter, C.Seynaeve, M.S., P.Sharma,
- 952 CY.S., H.Shimelis, M.J.Shrubsole, XO.S., L.E.S., J.Simard, C.F.S., C.Sohn,
- 953 P.Soucy, M.C.S., J.J.S., A.B.S., C.Stegmaier, J.Stone, D.SL., G.S., H.Surowy,
- 954 C.Sutter, A.S., C.I.S., R.M.T., Y.Y.T., J.A.T., M.R.T., MI.T., M.Tengström, S.H.T.,
- 955 M.B.T., A.T., M.Thomassen, D.L.T., K.Thöne, MG.T., L.T., M.Tischkowitz, A.E.T.,
- 956 R.A.E.M.T., I.T., D.T., M.Tranchant, T.T., K.Tucker, N.T., HU.U., C.V., D.vdB., L.V.,
- 957 R.VM., A.Vega, A.Viel, J.Vijai, L.W., Q.W., S.WG., B.W., C.R.W., J.N.W., C.W.,
- 958 J.W., A.S.W., J.T.W., W.W., R.W., A.W., A.H.W., X.R.Y., D.Y., D.Z., W.Z., A.Z., E.Z.,
- 959 K.K.Z., I.dSS., kConFab.AOCS.I., C.J.v.A., E.vR., A.M.W.vdO.
- 960 All authors read and approved the final version of the manuscript.
- 961

962 Competing Financial Interests

- 963 The authors confirm that they have no competing financial interests
- 964

965 References

- Michailidou, K. *et al.* Identification of more than 70 new breast cancer susceptibility loci for breast cancer and definition of risk-associated genomic features *Nature* (under review).
 Ahmed, S. *et al.* Newly discovered breast cancer susceptibility loci on 3p24 and 17q23.2. *Nat Genet* 41, 585-90 (2009).
- Antoniou, A.C. *et al.* A locus on 19p13 modifies risk of breast cancer in
 BRCA1 mutation carriers and is associated with hormone receptor-negative
 breast cancer in the general population. *Nat Genet* 42, 885-92 (2010).
- 4. Cai, Q. *et al.* Genome-wide association study identifies breast cancer risk
 variant at 10q21.2: results from the Asia Breast Cancer Consortium. *Hum Mol Genet* 20, 4991-9 (2011).
- 5. Cox, A. *et al.* A common coding variant in CASP8 is associated with breast cancer risk. *Nat Genet* **39**, 352-8 (2007).
- 6. Easton, D.F. *et al.* Genome-wide association study identifies novel breast cancer susceptibility loci. *Nature* **447**, 1087-93 (2007).
- Fletcher, O. *et al.* Novel breast cancer susceptibility locus at 9q31.2: results of a genome-wide association study. *J Natl Cancer Inst* 103, 425-35 (2011).
- 8. Ghoussaini, M. *et al.* Genome-wide association analysis identifies three new breast cancer susceptibility loci. *Nat Genet* **44**, 312-8 (2012).
- 985
 9. Haiman, C.A. *et al.* A common variant at the TERT-CLPTM1L locus is
 986 associated with estrogen receptor-negative breast cancer. *Nat Genet* 43,
 987 1210-4 (2011).
- Hein, R. *et al.* Comparison of 6q25 breast cancer hits from Asian and
 European Genome Wide Association Studies in the Breast Cancer
 Association Consortium (BCAC). *PLoS One* 7, e42380 (2012).

991 992	11.	Hunter, D.J. <i>et al.</i> A genome-wide association study identifies alleles in FGFR2 associated with risk of sporadic postmenopausal breast cancer. <i>Nat</i>
993 994 995 996	12.	<i>Genet</i> 39 , 870-4 (2007). Siddiq, A. <i>et al.</i> A meta-analysis of genome-wide association studies of breast cancer identifies two novel susceptibility loci at 6q14 and 20q11. <i>Hum Mol Genet</i> 21 , 5373-84 (2012).
997 998 999	13.	Stacey, S.N. <i>et al.</i> Common variants on chromosomes 2q35 and 16q12 confer susceptibility to estrogen receptor-positive breast cancer. <i>Nat Genet</i> 39 , 865-9 (2007).
1000 1001	14.	Stacey, S.N. <i>et al.</i> Common variants on chromosome 5p12 confer susceptibility to estrogen receptor-positive breast cancer. <i>Nat Genet</i> 40 , 703-6
1002 1003 1004 1005	15.	(2008). Thomas, G. <i>et al.</i> A multistage genome-wide association study in breast cancer identifies two new risk alleles at 1p11.2 and 14q24.1 (RAD51L1). <i>Nat</i> <i>Genet</i> 41 , 579-84 (2009).
1006 1007	16.	Turnbull, C. <i>et al.</i> Genome-wide association study identifies five new breast cancer susceptibility loci. <i>Nat Genet</i> 42 , 504-7 (2010).
1008 1009	17.	Zheng, W. <i>et al.</i> Genome-wide association study identifies a new breast cancer susceptibility locus at 6q25.1. <i>Nat Genet</i> 41 , 324-8 (2009).
1010 1011 1012	18.	Bojesen, S.E. <i>et al.</i> Multiple independent variants at the TERT locus are associated with telomere length and risks of breast and ovarian cancer. <i>Nat Genet</i> 45 , 371-84 (2013).
1013 1014	19.	Garcia-Closas, M. <i>et al.</i> Genome-wide association studies identify four ER negative-specific breast cancer risk loci. <i>Nat Genet</i> 45 , 392-8 (2013).
1015 1016	20.	Michailidou, K. <i>et al.</i> Large-scale genotyping identifies 41 new loci associated with breast cancer risk. <i>Nat Genet</i> 45 , 353-61 (2013).
1017 1018 1019	21.	Cai, Q. <i>et al.</i> Genome-wide association analysis in East Asians identifies breast cancer susceptibility loci at 1q32.1, 5q14.3 and 15q26.1. <i>Nat Genet</i> 46 , 886-90 (2014).
1020 1021	22.	Long, J. <i>et al.</i> Genome-wide association study in east Asians identifies novel susceptibility loci for breast cancer. <i>PLoS Genet</i> 8 , e1002532 (2012).
1022 1023 1024	23.	Michailidou, K. <i>et al.</i> Genome-wide association analysis of more than 120,000 individuals identifies 15 new susceptibility loci for breast cancer. <i>Nat Genet</i> 47 , 373-80 (2015).
1025 1026 1027	24.	Milne, R.L. <i>et al.</i> Common non-synonymous SNPs associated with breast cancer susceptibility: findings from the Breast Cancer Association Consortium. <i>Hum Mol Genet</i> 23 , 6096-111 (2014).
1027 1028 1029	25.	Gaudet, M.M. <i>et al.</i> Identification of a BRCA2-specific modifier locus at 6p24 related to breast cancer risk. <i>PLoS Genet</i> 9 , e1003173 (2013).
1030 1031 1032	26.	Meyer, K.B. <i>et al.</i> Fine-scale mapping of the FGFR2 breast cancer risk locus: putative functional variants differentially bind FOXA1 and E2F1. <i>Am J Hum Genet</i> 93 , 1046-60 (2013).
1033 1034	27.	Orr, N. <i>et al.</i> Fine-mapping identifies two additional breast cancer susceptibility loci at 9q31.2. <i>Hum Mol Genet</i> 24 , 2966-84 (2015).
1035 1036 1037	28.	French, J.D. <i>et al.</i> Functional variants at the 11q13 risk locus for breast cancer regulate cyclin D1 expression through long-range enhancers. <i>Am J Hum Genet</i> 92 , 489-503 (2013).
1038 1039 1040	29.	Dunning, A.M. <i>et al.</i> Breast cancer risk variants at 6q25 display different phenotype associations and regulate ESR1, RMND1 and CCDC170. <i>Nat Genet</i> 48 , 374-86 (2016).

1041	30.	Couch, F.J. et al. Identification of four novel susceptibility loci for oestrogen
1042		receptor negative breast cancer. Nat Commun 7, 11375 (2016).
1043	31.	Lawrenson, K. et al. Functional mechanisms underlying pleiotropic risk alleles
1044		at the 19p13.1 breast-ovarian cancer susceptibility locus. Nat Commun 7,
1045		12675 (2016).
1046	32.	Wyszynski, A. <i>et al.</i> An intergenic risk locus containing an enhancer deletion
	52.	
1047		in 2q35 modulates breast cancer risk by deregulating IGFBP5 expression.
1048	00	Hum Mol Genet (2016).
1049	33.	Mavaddat, N. et al. Pathology of breast and ovarian cancers among BRCA1
1050		and BRCA2 mutation carriers: results from the Consortium of Investigators of
1051		Modifiers of BRCA1/2 (CIMBA). Cancer Epidemiol Biomarkers Prev 21, 134-
1052		47 (2012).
1053	34.	Amos, C.I. et al. The OncoArray Consortium: a Network for Understanding the
1054		Genetic Architecture of Common Cancers. Cancer Epidemiol Biomarkers
1055		Prev (2016).
1056	35.	Antoniou, A.C. et al. A weighted cohort approach for analysing factors
1057		modifying disease risks in carriers of high-risk susceptibility genes. Genet
1058		<i>Epidemiol</i> 29 , 1-11 (2005).
1059	36.	Barnes, D.R., Lee, A., Easton, D.F. & Antoniou, A.C. Evaluation of association
1060	00.	methods for analysing modifiers of disease risk in carriers of high-risk
1060		mutations. Genet Epidemiol 36 , 274-91 (2012).
	27	
1062	37.	Ahsan, H. <i>et al.</i> A genome-wide association study of early-onset breast
1063		cancer identifies PFKM as a novel breast cancer gene and supports a
1064		common genetic spectrum for breast cancer at any age. Cancer Epidemiol
1065		Biomarkers Prev 23, 658-69 (2014).
1066	38.	Stevens, K.N. et al. 19p13.1 is a triple-negative-specific breast cancer
1067		susceptibility locus. Cancer Res 72, 1795-803 (2012).
1068	39.	Willer, C.J., Li, Y. & Abecasis, G.R. METAL: fast and efficient meta-analysis of
1069		genomewide association scans. <i>Bioinformatics</i> 26 , 2190-1 (2010).
1070	40.	Maller, J.B. et al. Bayesian refinement of association signals for 14 loci in 3
1071		common diseases. Nat Genet 44, 1294-301 (2012).
1072	41.	Udler, M.S., Tyrer, J. & Easton, D.F. Evaluating the power to discriminate
1073		between highly correlated SNPs in genetic association studies. Genet
1074		<i>Epidemiol</i> 34 , 463-8 (2010).
1075	42.	ENCODE Project Consortium. A user's guide to the encyclopedia of DNA
1076	12.	elements (ENCODE). <i>PLoS Biol</i> 9 , e1001046 (2011).
1070	43.	Kheradpour, P. & Kellis, M. Systematic discovery and characterization of
1078	- J.	regulatory motifs in ENCODE TF binding experiments. <i>Nucleic Acids Res</i> 42 ,
1079		2976-87 (2014).
1080	44.	Kundaje, A. <i>et al.</i> Integrative analysis of 111 reference human epigenomes.
1081	. –	Nature 518 , 317-30 (2015).
1082	45.	Boyle, A.P. et al. Annotation of functional variation in personal genomes using
1083		RegulomeDB. <i>Genome Res</i> 22 , 1790-7 (2012).
1084	46.	He, B., Chen, C., Teng, L. & Tan, K. Global view of enhancer-promoter
1085		interactome in human cells. Proc Natl Acad Sci U S A 111, E2191-9 (2014).
1086	47.	Rao, S.S. et al. A 3D map of the human genome at kilobase resolution
1087		reveals principles of chromatin looping. Cell 159, 1665-80 (2014).
1088	48.	Corradin, O. et al. Combinatorial effects of multiple enhancer variants in
1089		linkage disequilibrium dictate levels of gene expression to confer susceptibility
1090		to common traits. <i>Genome Res</i> 24 , 1-13 (2014).

1091 1092	49.	Forrest, A.R. <i>et al.</i> A promoter-level mammalian expression atlas. <i>Nature</i> 507 , 462-70 (2014).
1093 1094	50.	GTEx Consortium. Human genomics. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. <i>Science</i> 348 ,
1095		648-60 (2015).
1096	51.	Hnisz, D. et al. Super-enhancers in the control of cell identity and disease.
1097		<i>Cell</i> 155 , 934-47 (2013).
1098	52.	Westra, H.J. et al. Systematic identification of trans eQTLs as putative drivers
1099		of known disease associations. Nat Genet 45, 1238-43 (2013).
1100	53.	James, L.I. et al. Small-molecule ligands of methyl-lysine binding proteins:
1101		optimization of selectivity for L3MBTL3. J Med Chem 56, 7358-71 (2013).
1102	54.	Sukari, A., Muqbil, I., Mohammad, R.M., Philip, P.A. & Azmi, A.S. F-BOX
1103		proteins in cancer cachexia and muscle wasting: Emerging regulators and
1104		therapeutic opportunities. Semin Cancer Biol 36 , 95-104 (2016).
1105	55.	Ling Zheng, L. et al. Interaction of Heat Shock Protein Cpn10 with the Cyclin
1106		E/Cdk2 Substrate Nuclear Protein Ataxia-Telangiectasia (NPAT) Is Involved in
1107		Regulating Histone Transcription. J Biol Chem 290, 29290-300 (2015).
1108	56.	Easton, D.F. et al. Gene-panel sequencing and the prediction of breast-
1109		cancer risk. <i>N Engl J Med</i> 372 , 2243-57 (2015).
1110	57.	Rogers, S. et al. Cyclin E2 is the predominant E-cyclin associated with NPAT
1111		in breast cancer cells. <i>Cell Div</i> 10 , 1 (2015).
1112	58.	Li, Q. et al. Integrative eQTL-based analyses reveal the biology of breast
1113		cancer risk loci. Cell 152, 633-41 (2013).
1114	59.	Cancer Genome Atlas Network. Comprehensive molecular portraits of human
1115		breast tumours. <i>Nature</i> 490 , 61-70 (2012).
1116	60.	Curtis, C. et al. The genomic and transcriptomic architecture of 2,000 breast
1117		tumours reveals novel subgroups. <i>Nature</i> 486 , 346-52 (2012).
1118	61.	Merico, D., Isserlin, R., Stueker, O., Emili, A. & Bader, G.D. Enrichment map:
1119		a network-based method for gene-set enrichment visualization and
1120		interpretation. <i>PLoS One</i> 5 , e13984 (2010).
1121	62.	Wang, K., Li, M. & Bucan, M. Pathway-based approaches for analysis of
1122		genomewide association studies. Am J Hum Genet 81, 1278-83 (2007).
1123	63.	Wang, K., Li, M. & Hakonarson, H. Analysing biological pathways in genome-
1124		wide association studies. Nat Rev Genet 11 , 843-54 (2010).
1125	64.	Wang, L., Jia, P., Wolfinger, R.D., Chen, X. & Zhao, Z. Gene set analysis of
1126		genome-wide association studies: methodological issues and perspectives.
1127		<i>Genomics</i> 98 , 1-8 (2011).
1128	65.	Hacker, B.M. et al. Cloning, chromosomal mapping, and regulatory properties
1129		of the human type 9 adenylyl cyclase (ADCY9). Genomics 50, 97-104 (1998).
1130	66.	Melhem-Bertrandt, A. et al. Beta-blocker use is associated with improved
1131		relapse-free survival in patients with triple-negative breast cancer. J Clin
1132		Oncol 29 , 2645-52 (2011).
1133	67.	Pon, C.K., Lane, J.R., Sloan, E.K. & Halls, M.L. The beta2-adrenoceptor
1134		activates a positive cAMP-calcium feedforward loop to drive breast cancer cell
1135		invasion. FASEB J 30, 1144-54 (2016).
1136	68.	Finucane, H.K. et al. Partitioning heritability by functional annotation using
1137		genome-wide association summary statistics. <i>Nat Genet</i> 47 , 1228-35 (2015).
1138	69.	Bulik-Sullivan, B. et al. An atlas of genetic correlations across human
1139		diseases and traits. <i>Nat Genet</i> 47 , 1236-41 (2015).

70. Bulik-Sullivan, B.K. et al. LD Score regression distinguishes confounding from 1140 polygenicity in genome-wide association studies. Nat Genet 47, 291-5 (2015). 1141 Milne, R.L. & Antoniou, A.C. Genetic modifiers of cancer risk for BRCA1 and 71. 1142 BRCA2 mutation carriers. Ann Oncol 22 Suppl 1, i11-7 (2011). 1143 Mavaddat, N. et al. Prediction of breast cancer risk based on profiling with 1144 72. common genetic variants. J Natl Cancer Inst 107(2015). 1145 1146 1147 1148 1149

1150 Figure legends

1151 Figure 1. Genomic region around independent ER negative risk associated 1152 variants, 11_108345515_G_A (rs11374964) and 11_108357137_G_A 1153 (rs74911261). One Mb region showing statistical significance of all genotyped and 1154 imputed SNPs and positions of candidate causal variants for two independent 1155 signals (shown below as red or blue ticks) in relation to RefSeq genes. Missense 1156 variants are labelled with asterisks. Breast cell enhancers overlapping candidate SNPs predicted to target nearby genes by IM-PET⁴⁶ are depicted as black bars. 1157 Chromatin interactions from ENCODE ChIA-PET in MCF7 cells overlapping 1158 candidate variants are shaded to reflect interaction confidence scores. Epigenomic 1159 1160 features (derived from publicly available ChIP-seg and DNase-seg) that overlap candidate variants are shown as red or blue segments, depending on the intersected 1161 1162 signal. Density tracks show the summed occurrence of ChIP-seq and DNase-seq 1163 peak signals at each position. Roadmap Epigenomics Project chromatin state 1164 models for HMEC and myoepithelial cells grouped into enhancer, promoter or transcribed annotations are shown as yellow, red or green segments, respectively. 1165 1166 Transcript levels in MCF7 and HMEC cells are represented by histograms depicting 1167 mean normalised RNA-seq expression. All MCF7 ChIA-PET (ENCODE) and HMEC Hi-C⁴⁷ chromatin interactions are represented by black and blue arcs, respectively. 1168 1169 NHGRI catalog GWAS SNPs are shown as green ticks. All Oncoarray SNPs 1170 (genotyped or imputed) are shown as black ticks and uninterrogated, common SNPs 1171 (dbSNP138, EUR MAF > 1%) as red ticks. Features may be examined in detail via exploration of a custom UCSC Genome Browser session accessible via hyperlinks 1172 1173 within Supplementary Table 5.

1175

Table 1: Ten novel loci associated with risk of estrogen receptor (ER)-negative breast cancer using meta-analysis of BCAC and 1176

1177 **CIMBA** data

	SNP	Chr	Position	Nearest gene	Alleles [#]	BCAC ER-negative [†]			CIMBA	A BRCA1 mutation	Meta-analysis	Heterogeneity	
Location						MAF	OR (95%CI)	P-value	MAF	HR (95%CI)	P-value	P-value	P-value [¥]
2p23.3	rs200648189	2	24739694	NCOA1	CT/C	0.19	0.94 (0.91-0.97)	4.7x10 ⁻⁴	0.20	0.88 (0.84-0.92)	3.3x10⁻′	9.7x10⁻ ⁹	2.0x10 ⁻²
6q23.1	rs6569648	6	130349119	L3MBTL3	T/C	0.23	0.93 (0.90-0.95)	4.3x10 ⁻⁸	0.22	0.94 (0.90-0.98)	5.4x10 ⁻³	8.3x10 ⁻¹⁰	0.64
8p23.3	rs66823261	8	170692	RPL23AP53	T/C	0.23	1.09 (1.06-1.12)	5.6x10⁻ ⁹	0.22	1.02 (0.98-1.07)	0.32	3.3x10⁻ ⁸	3.0x10 ⁻²
8q24.13	rs17350191	8	124757661	ANXA13	C/T	0.34	1.07 (1.04-1.09)	2.0x10 ⁻⁸	0.34	1.08 (1.04-1.12)	1.9x10 ⁻⁴	1.7x10 ⁻¹¹	0.81
11q22.3	rs11374964	11	108345515	KDELC2	G/GA	0.42	0.94 (0.92-0.96)	3.6x10⁻ ⁸	0.43	0.91 (0.88-0.95)	1.3x10 ⁻⁶	4.1x10 ⁻¹³	0.26
11q22.3	rs74911261	11	108357137	KDELC2	G/A	0.02	0.82 (0.75-0.89)	2.3x10⁻ ⁶	0.02	0.74 (0.65-0.84)	2.0x10 ⁻⁶	5.4x10 ⁻¹¹	0.17
16p13.3	rs11076805	16	4106788	ADCY9	C/A	0.25	0.92 (0.90-0.95)	2.2x10 ⁻⁸	0.25	0.96 (0.92-1.00)	0.073	1.4x10 ⁻⁸	0.14
18q12.1	rs36194942	18	25401204	CDH2	A/AT	0.30	0.94 (0.91-0.96)	2.5x10⁻ ⁷	0.31	0.95 (0.91-0.99)	1.4x10 ⁻²	1.4x10 ⁻⁸	0.50
19p13.2	rs322144	19	11423703	TSPAN16	C/G	0.47	0.95 (0.93-0.97)	2.4x10⁻⁵	0.46	0.92 (0.89-0.96)	3.7x10⁻⁵	7.4x10⁻ ⁹	0.23
19q12	rs113701136	19	30277729	CCNE1	C/T	0.32	1.07 (1.04-1.09)	1.7x10 ⁻⁷	0.32	1.05 (1.01-1.09)	1.2x10 ⁻²	6.8x10 ⁻⁹	0.57

[#]More common allele listed first, minor allele second; [†]Combined data from 21,468 ER-negative cases and 100,594 controls of European ancestry from the Breast Cancer Association Consortium

(BCAC); *Combined data from 18,908 BRCA1 mutation carriers from the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA), 9,414 of whom had developed breast cancer; *Test for

heterogeneity in effect size for ER-negative disease and overall disease for BRCA1 mutation carriers

Chr, chromosome; MAF, minor allele frequency; OR, odds ratio per copy of the minor allele; Cl, confidence interval; HR, hazard ratio per copy of the minor allele

Table 2: Previously reported estrogen receptor (ER)-negative hits: replication using independent data from BCAC and combined 1186

1187 results using all BCAC and CIMBA data

SNP	Chr	Position		F Nearest gene	Alleles [#]	IND	EPENDENT REPL	ICATION	ALL AVAILABLE DATA COMBINED				
			Ref			BCAC ER-negative (OncoArray)*			BCAC ER-negati	ve [†]	CIMBA BRCA1 [‡]		
						MAF	OR (95%CI)	P-value	OR (95%CI)	P-value	HR (95%CI)	P-value	
rs6678914	1	202187176	19	LGR6	G/A	0.41	0.94 (0.91-0.97)	1.1x10 ⁻⁴	0.92 (0.90-0.94)	2.6x10 ⁻¹²	0.98 (0.95-1.02)	0.31	
rs4245739	1	204518842	19	MDM4	A/C	0.26	1.12 (1.09-1.17)	9.2x10 ⁻¹¹	1.14 (1.11-1.16)	3.1x10 ⁻²³	1.09 (1.04-1.13)	7.3x10⁻⁵	
rs12710696	2	19320803	19	MIR4757	C/T	0.37	1.04 (1.00-1.07)	2.5x10 ⁻²	1.06 (1.04-1.09)	6.5x10 ⁻⁸	1.01 (0.98-1.05)	0.49	
rs4577244 [‡]	2	29120733	30	WDR43	C/T	0.34	0.93 (0.89-0.96)	9.6x10⁻⁵	0.92 (0.90-0.95)	1.5x10 ⁻⁹	0.92 (0.88-0.96)	1.3x10⁻⁴	
rs10069690	5	1279790	9,18	TERT	C/T	0.26	1.19 (1.14-1.23)	3.8x10 ⁻²¹	1.18 (1.15-1.21)	1.5x10 ⁻³⁵	1.18 (1.14-1.23)	3.7x10 ⁻¹⁶	
rs3757322 [‡]	6	151942194	29	ESR1	T/G	0.32	1.14 (1.10-1.18)	5.5x10 ⁻¹⁴	1.15 (1.12-1.18)	2.8x10 ⁻³¹	1.14 (1.10-1.19)	2.9x10 ⁻¹²	
rs2747652 [‡]	6	152437016	29	ESR1	C/T	0.48	0.92 (0.89-0.95)	1.1x10⁻ ⁷	0.91 (0.89-0.93)	1.9x10 ⁻¹⁸	1.00 (0.97-1.04)	0.96	
rs6562760 [‡]	13	73957681	30	KLF5	G/A	0.24	0.92 (0.88-0.95)	5.0x10 ⁻⁶	0.92 (0.90-0.95)	8.7x10 ⁻¹⁰	0.89 (0.86-0.93)	3.5x10⁻ ⁷	
rs11075995	16	53855291	19	FTO	T/A	0.30	1.07 (1.03-1.11)	3.3x10⁻⁴	1.09 (1.06-1.12)	1.0x10 ⁻¹⁰	1.01 (0.97-1.06)	0.49	
rs67397200	19	17401404	3,31	ANKLE1	C/G	0.32	1.17 (1.13-1.21)	7.0x10 ⁻²⁰	1.17 (1.14-1.19)	2.7x10 ⁻³⁷	1.18 (1.14-1.23)	2.7x10 ⁻¹⁷	
rs2284378	20	32588095	12	RALY	C/T	0.32	0.99 (0.95-1.02)	0.46	1.03 (1.01-1.06)	1.7x10 ⁻²	1.00 (0.97-1.04)	0.81	
	rs6678914 rs4245739 rs12710696 rs4577244 [‡] rs10069690 rs3757322 [‡] rs2747652 [‡] rs6562760 [‡] rs11075995 rs67397200	rs6678914 1 rs4245739 1 rs12710696 2 rs4577244 [‡] 2 rs10069690 5 rs3757322 [‡] 6 rs2747652 [‡] 6 rs6562760 [‡] 13 rs11075995 16 rs67397200 19	rs6678914 1 202187176 rs4245739 1 204518842 rs12710696 2 19320803 rs4577244 [‡] 2 29120733 rs10069690 5 1279790 rs3757322 [‡] 6 151942194 rs2747652 [‡] 6 152437016 rs6562760 [‡] 13 73957681 rs11075995 16 53855291 rs67397200 19 17401404	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	SNP Chin Position Ref gene rs6678914 1 202187176 ¹⁹ LGR6 rs4245739 1 204518842 ¹⁹ MDM4 rs12710696 2 19320803 ¹⁹ MIR4757 rs4577244 [#] 2 29120733 ³⁰ WDR43 rs10069690 5 1279790 ^{9,18} TERT rs3757322 [#] 6 151942194 ²⁹ ESR1 rs6562760 [‡] 13 73957681 ³⁰ KLF5 rs11075995 16 53855291 ¹⁹ FTO rs67397200 19 17401404 ^{3,31} ANKLE1	SNP Chi Position Ref gene Alleles rs6678914 1 202187176 ¹⁹ LGR6 G/A rs4245739 1 204518842 ¹⁹ MDM4 A/C rs12710696 2 19320803 ¹⁹ MIR4757 C/T rs4577244 [#] 2 29120733 ³⁰ WDR43 C/T rs10069690 5 1279790 ^{9,18} TERT C/T rs3757322 [#] 6 151942194 ²⁹ ESR1 T/G rs2747652 [#] 6 152437016 ²⁹ ESR1 C/T rs6562760 [#] 13 73957681 ³⁰ KLF5 G/A rs11075995 16 53855291 ¹⁹ FTO T/A rs67397200 19 17401404 ^{3,31} ANKLE1 C/G	SNP Chr Position Ref Nearest gene Alleles* BCAC rs6678914 1 202187176 ¹⁹ LGR6 G/A 0.41 rs4245739 1 204518842 ¹⁹ MDM4 A/C 0.26 rs12710696 2 19320803 ¹⁹ MIR4757 C/T 0.37 rs4577244* 2 29120733 ³⁰ WDR43 C/T 0.34 rs10069690 5 1279790 ^{9,18} TERT C/T 0.32 rs2747652* 6 151942194 ²⁹ ESR1 T/G 0.32 rs6562760* 13 73957681 ³⁰ KLF5 G/A 0.24 rs11075995 16 53855291 ¹⁹ FTO T/A 0.30 rs67397200 19 17401404 ^{3,31} ANKLE1 C/G 0.32	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	

[#]More common allele listed first, minor allele second; *Includes Breast Cancer Association Consortium (BCAC) OncoArray data from 9,655 ER-negative cases and 45,494 controls cases and

controls not included in previously published studies; [†]Combined data from 21,468 ER-negative cases and 100,594 controls of European ancestry from BCAC, which includes overlapping samples

1188 1189 1190 1191 1192 1193 with previous publications for all SNPs; *Combined data from 18,908 BRCA1 mutation carriers from the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA), 9,414 of whom had developed

breast cancer - includes overlapping samples with previous publications for SNPs rs4577244, rs3757322, rs2747652 and rs6562760

Chr, chromosome; Ref, publication(s) in reference list in which the association was identified; MAF, minor allele frequency; OR, odds ratio per copy of the minor allele; CI, confidence interval; HR,

1194 hazard ratio per copy of the minor allele

1195

1197 Table 3: Associations for 10 novel and 10 previously reported (and replicated) ER-

1198 negative breast cancer susceptibility loci, by triple-negative status

1199 (BCAC data only: ER-negative cases^{*}, all controls))

	0.15	Triple-neg	ative	Other ER-ne	Heterogeneity			
Location	SNP	OR (95%CI)	P-value	OR (95%CI)	P-value	P-value*		
Loci identified by the present study								
2p23.3	rs200648189	0.95 (0.90-1.00)	4.8x10 ⁻²	0.96 (0.91-1.03)	0.24	0.36		
6q23.1	rs6569648	0.93 (0.89-0.97)	1.4x10 ⁻³	0.93 (0.88-0.98)	5.6x10⁻³	0.91		
8p23.3	rs66823261	1.11 (1.05-1.16)	3.3x10⁻⁵	1.12 (1.07-1.19)	2.4x10⁻⁵	0.91		
8q24.13	rs17350191	1.07 (1.03-1.11)	7.9x10 ⁻⁴	1.07 (1.02-1.12)	4.0x10 ⁻³	0.67		
11q22.3	rs11374964	0.88 (0.85-0.91)	1.9x10 ⁻¹¹	0.99 (0.95-1.04)	0.75	1.5x10⁻⁵		
11q22.3	rs74911261	0.76 (0.66-0.87)	1.1x10 ⁻⁴	0.98 (0.84-1.13)	0.76	3.0x10 ⁻²		
16p13.3	rs11076805	0.91 (0.87-0.96)	1.5x10 ⁻⁴	0.95 (0.90-1.00)	4.5x10 ⁻²	0.20		
18q12.1	rs36194942	0.93 (0.89-0.96)	2.4x10 ⁻⁴	0.92 (0.88-0.97)	9.9x10 ⁻⁴	0.94		
19p13.2	rs322144	0.94 (0.91-0.98)	5.9x10 ⁻³	0.94 (0.90-0.98)	9.7x10 ⁻³	0.68		
19q12	rs113701136	1.10 (1.06-1.15)	9.1x10 ⁻⁷	1.07 (1.02-1.12)	4.4x10 ⁻³	0.12		
Previousl	y reported loci (a	ssociations replicat		esent study)				
1q32.1	rs6678914	0.94 (0.91-0.98)	2.1x10 ⁻³	0.91 (0.87-0.95)	2.0x10⁻⁵	0.45		
1q32.1	rs4245739	1.18 (1.13-1.23)	4.3x10 ⁻¹⁵	1.04 (1.00-1.10)	7.5x10 ⁻²	6.5x10 ⁻⁴		
2p24.1	rs12710696	1.07 (1.03-1.11)	1.1x10 ⁻³	1.04 (1.00-1.09)	6.1x10 ⁻²	0.52		
2p23.2	rs4577244	0.90 (0.86-0.94)	5.3x10 ⁻⁶	0.94 (0.89-0.99)	1.9x10 ⁻²	0.15		
5p15.33	rs10069690	1.28 (1.23-1.33)	2.4x10 ⁻³³	1.07 (1.02-1.12)	5.4x10 ⁻³	5.6x10 ⁻⁸		
6q25.1	rs3757322	1.15(1.10-1.19)	4.3x10 ⁻¹²	1.14(1.10-1.20)	4.8x10 ⁻⁹	0.35		
6q25.2	rs2747652	0.93(0.89-0.96)	5.7x10 ⁻⁵	0.87(0.83-0.91)	2.9x10 ⁻¹⁰	9.6x10 ⁻³		
13q22.1	rs6562760	0.94 (0.90-0.98)	2.8x10 ⁻³	0.92 (0.87-0.96)	8.8x10 ⁻⁴	0.46		
16q12.2	rs11075995	1.06 (1.02-1.11)	6.5x10 ⁻³	1.08 (1.03-1.13)	3.1x10 ⁻³	0.81		
19p13.11	rs67397200	1.27 (1.22-1.32)	2.0x10 ⁻³²	1.05 (1.01-1.10)	2.7x10 ⁻²	4.7x10 ⁻¹⁰		

⁺Combined Breast Cancer Association Consortium (BCAC) data from 6,877 triple-negative and 4,467 other ER-negative cases

and 83,700 controls; *ER-negative case-only analysis, by triple-negative status; OR, odds ratio per copy of the minor allele;

CI, confidence interval

1205

1207 Table 4: Associations for 10 novel and 10 previously reported (and replicated) ER-negative breast cancer

susceptibility loci, by grade (BCAC data only: ER-negative cases[‡], all controls) 1208

		•		-	•			
Leastle		Grade	1	Grade	2	Grade	Heterogeneity	
Location	SNP	OR (95%CI)	P-value	OR (95%CI)	P-value	OR (95%CI)	P-value	P-value*
Loci ident	ified by the presen	nt study						
2p23.3	rs200648189	1.11 (0.92-1.33)	0.28	0.95 (0.88-1.03)	0.23	0.96 (0.91-1.00)	6.8x10 ⁻²	0.70
6q23.1	rs6569648	0.93 (0.79-1.09)	0.37	0.93 (0.87-0.99)	1.6x10 ⁻²	0.94 (0.91-0.98)	3.8x10⁻³	0.34
8p23.3	rs66823261	1.13 (0.96-1.34)	0.14	1.12 (1.04-1.19)	1.2x10 ⁻³	1.10 (1.05-1.15)	1.3x10⁻⁵	0.11
8q24.13	rs17350191	1.16 (1.01-1.34)	3.0x10 ⁻²	1.05 (0.99-1.11)	0.10	1.09 (1.05-1.12)	4.1x10 ⁻⁶	0.94
11q22.3	rs11374964	0.91 (0.79-1.04)	0.16	0.99 (0.94-1.05)	0.85	0.93 (0.90-0.96)	1.3x10⁻⁵	3.0x10 ⁻²
11q22.3	rs74911261	1.22 (0.81-1.84)	0.35	0.89 (0.73-1.07)	0.21	0.74 (0.65-0.85)	7.4x10⁻ ⁶	6.7x10 ⁻⁴
16p13.3	rs11076805	0.90 (0.76-1.06)	0.21	0.93 (0.87-0.99)	3.2x10 ⁻²	0.92 (0.88-0.95)	4.5x10⁻⁵	0.71
18q12.1	rs36194942	0.97 (0.84-1.13)	0.73	0.93 (0.88-0.99)	2.2x10 ⁻²	0.96 (0.92-0.99)	2.3x10 ⁻²	0.98
19p13.2	rs322144	0.94 (0.81-1.08)	0.38	0.95 (0.90-1.01)	0.11	0.96 (0.93-1.00)	6.4x10 ⁻²	0.48
19q12	rs113701136	1.02 (0.89-1.18)	0.77	1.06 (1.01-1.13)	3.0x10 ⁻²	1.10 (1.06-1.14)	2.5x10⁻ ⁷	0.12
	/ reported loci (as	sociations replicat	ed by the pro	esent study)				
1q32.1	rs6678914	0.95 (0.83-1.09)	0.46	0.90 (0.85-0.95)	9.3x10⁻⁵	0.92 (0.89-0.95)	1.2x10 ⁻⁶	0.75
1q32.1	rs4245739	1.02 (0.88-1.19)	0.75	1.05 (0.99-1.12)	8.7x10 ⁻²	1.18 (1.14-1.22)	2.5x10 ⁻¹⁸	4.3x10⁻⁵
2p24.1	rs12710696	1.08 (0.94-1.23)	0.28	1.10 (1.04-1.16)	9.6x10⁻⁴	1.04 (1.01-1.08)	1.6x10 ⁻²	0.28
2p23.2	rs4577244	1.02 (0.88-1.20)	0.77	0.95 (0.89-1.01)	9.4x10 ⁻²	0.90 (0.86-0.93)	1.2x10 ⁻⁷	4.0x10 ⁻²
5p15.33	rs10069690	0.96 (0.83-1.12)	0.64	1.07 (1.01-1.14)	2.2x10 ⁻²	1.21 (1.17-1.26)	1.5x10 ⁻²⁴	7.3x10 ⁻⁴
6q25.1	rs3757322	1.16 (1.01-1.34)	0.04	1.13 (1.07-1.20)	7.5x10⁻ ⁶	1.18 (1.14-1.22)	4.5x10 ⁻²⁰	0.16
6q25.2	rs2747652	0.86 (0.75-0.98)	0.02	0.92 (0.87-0.97)	1.9x10 ⁻³	0.90 (0.87-0.93)	1.6x10 ⁻⁹	0.61
13q22.1	rs6562760	0.98 (0.84-1.15)	0.82	0.92 (0.87-0.98)	1.4x10 ⁻²	0.91 (0.88-0.95)	1.2x10⁻⁵	0.52
16q12.2	rs11075995	1.16 (1.00-1.35)	4.7x10 ⁻²	1.09 (1.02-1.15)	7.5x10 ⁻³	1.08 (1.04-1.13)	5.2x10 ²⁸	0.42
19p13.11	rs67397200	1.01 (0.87-1.16)	0.91	1.08 (1.02-1.14)	9.8x10 ⁻³	1.22 (1.18-1.26)	5.3x10 ⁻³⁷	1.3x10 ⁻³

1209 1210 1211

*Combined Breast Cancer Association Consortium (BCAC) data from 492 grade 1, 3,243 grade 2 and 8,568 grade 3 cases and 82,347 controls; * ER-negative case-only

analysis of BCAC data, by grade (trend test, 1df); OR, odds ratio per copy of the minor allele; CI, confidence interval

1212 Online Methods

1213

1214 Study subjects

1215 Supplementary Table 1 summarises the studies from the Breast Cancer Association 1216 Consortium (BCAC) that contributed data. The majority were case-control studies. 1217 Sixty-eight BCAC studies participated in the ER-negative breast cancer component 1218 of the OncoArray, contributing 9,655 cases and 45,494 controls. All studies provided 1219 core data on disease status and age at diagnosis/observation, and the majority 1220 provided information on clinico-pathological and lifestyle factors, which have been 1221 curated and incorporated into the BCAC database (version 6). Estrogen receptor 1222 status for most (~70%) cases was obtained from clinical records. After removal of overlapping participants, genotype data were also available from eight 1223 GWASs^{9,12,16,37,38} (4,480 ER-negative cases and 12,632 controls) and 40 studies 1224 previously genotyped using the Illumina iCOGS custom array²⁰ (7,333 ER-negative 1225 1226 cases and 42,468 controls).

1227

1228 A total of 21,468 ER-negative cases were included in the combined analyses. Of 1229 those 5,793 had tumours that were also negative for progesterone receptor (PR) and 1230 human epidermal growth factor receptor 2 (HER2) and were defined as triple-1231 negative (TN). PR and HER2 status was also obtained predominantly from clinical 1232 records. A further 4,217 were positive for PR or HER and were considered non-TN. 1233 The remainder had unknown PR or HER status. All participating studies were 1234 approved by their appropriate ethics review boards and all subjects provided 1235 informed consent.

1236

1237 Subjects included from the Consortium of Investigators of Modifiers of BRCA1/2 1238 (CIMBA) were women of European ancestry aged 18 years or older with a 1239 pathogenic variant in BRCA1. The majority of the participants were sampled through 1240 cancer genetics clinics. Multiple members of the same families were included in 1241 some instances. Fifty-eight studies from 24 countries contributed Oncoarray 1242 genotype data. After guality control (see below) and removal of overlapping 1243 participants with the BCAC OncoArray study, data were available on 15,566 BRCA1 1244 mutation carriers, of whom 7,784 were affected with breast cancer (Supplementary 1245 Table 2). We also obtained iCOGS genotype data on 3,342 BRCA1 mutation carriers 1246 (1,630 with breast cancer) from 54 studies through CIMBA. All mutation carriers 1247 provided written informed consent and participated under ethically approved 1248 protocols.

1249

1250 OncoArray SNP selection

1251 Approximately 50% of the SNPs for the OncoArray were selected as a "GWAS" 1252 backbone" (Illumina HumanCore), which aimed to provide high coverage for the 1253 majority of common variants through imputation. The remaining allocation was 1254 selected from lists supplied by each of six disease-based consortia, together with a 1255 seventh lists of SNPs of interest to multiple disease groups. Approximately 72k 1256 SNPs were selected specifically for their relevance to breast cancer, based on prior 1257 evidence of association with overall or subtype-specific disease, with breast density 1258 or with breast tissue specific gene expression. Lists were merged, as described 1259 previously³⁴.

1260

1261 Genotype calling and quality control

1262 Details of the genotype calling and quality control (QC) for the iCOGS and GWAS 1263 are described elsewhere^{19,20,23,30}, and those for OncoArray are described in the 1264 Supplementary Note.

- 1265
- 1266 <u>Imputation</u>

1267 Genotypes for ~21M SNPs were imputed for all samples using the October 2014 (Phase 3) release of the 1000 Genomes Project data as the reference panel and 1268 1269 Nhap=800. The iCOGS, OncoArray and six of the GWAS datasets were imputed using a two-stage imputation approach, using SHAPEIT⁷³ for phasing and 1270 1271 IMPUTEv2⁷⁴ for imputation. The imputation was performed in 5Mb non-overlapping 1272 intervals. All subjects were split into subsets of ~10,000 samples, with subjects from 1273 the same grouped in the subset. The Breast and Prostate Cancer Cohort Consortium 1274 (BPC3) and Breast Cancer Family Registry (BCFR) GWAS performed the imputation separately using MACH and Minimac^{75,76}. We imputed genotypes for all SNPs that 1275 were polymorphic (MAF>0.1%) in either European or Asian samples. For the BCAC 1276 1277 GWAS, data were included in the analysis for all SNPs with MAF>0.01 and imputation r²>0.3. For iCOGS and OncoArray we included data for all SNPs with 1278 1279 imputation r^2 >0.3 and MAF>0.005.

- 1280
- 1281 Statistical analyses of BCAC data

Per-allele odds ratios and standard errors were generated for the Oncoarray, iCOGS 1282 1283 and each GWAS, adjusting for principal components using logistic regression. The 1284 Oncorray and iCOGS analyses were additionally adjusted for country and study, 1285 respectively. For the OncoArray dataset, principal components analysis was 1286 performed using data for 33,661 SNPs (which included the 2,318 markers of 1287 continental ancestry) with a MAF≥0.05 and maximum correlation of 0.1, using 1288 purpose-written software to allow standard calculations to be performed sufficiently 1289 rapidly on a very large dataset (http://ccge.medschl.cam.ac.uk/software/pccalc/). We 1290 used the first 10 principal components, as additional components did not further 1291 reduce inflation in the test statistics. We used nine principal components for the 1292 iCOGS and up to 10 principal components for the other GWAS, where this was 1293 found to reduce inflation.

1293 1294

1295 OR estimates were derived using MACH for the BCFR GWAS, ProbABEL⁷⁷ for the 1296 BPC3 GWAS, SNPTEST

(https://mathgen.stats.ox.ac.uk/genetics_software/snptest/snptest.html) for the
 remaining GWAS and purpose written software for the iCOGS and Oncoarray
 datasets. OR estimates and standard errors were combined by a fixed effects
 inverse variance meta-analysis using METAL³⁹. This was first done across the eight
 GWAS, applying genomic control, as described previously²⁰. It was then applied
 (without genomic control) to combine findings from the three BCAC genotyping
 initiatives (GWAS, iCOGS, OncoArray).

1304

The independence of signals from two variants at 11q22.3 was by fitting the logistic regression models described above with both variants as covariates. This was done separately for iCOGS and OncoArray data and results for each variant combined by meta-analysis.

1309

For selected SNPs we estimated per-allele ORs by ER-status using all availableBCAC data for 82,263 cases with known ER status and 87,962 controls from the

1312 iCOGS and OncoArray studies. We also estimated the per-allele ORs by TN status 1313 (TN versus other ER-negative subtypes) and tumour grade, using available BCAC data for ER-negative cases and corresponding controls. Tests for heterogeneity by 1314 1315 subtype were derived by applying logistic regression to cases only. This was done separately for the iCOGS and Oncoarray datasets, adjusted as before, and then 1316 1317 combined in a fixed-effects meta-analysis. Multinomial regression was applied to cases only to test a linear trend for grade, with the model constrained so that the 1318 1319 difference between grade 1 and 3 was double that for the difference between grade 1320 2 and 3; this method was also used to test for a linear trend with age with ordinal 1321 values 1, 2, 3 and 4 representing ages <40, 40-49, 50-59 and \geq 60, respectively. 1322

1323 Statistical analyses of CIMBA data

1324 Associations between genotypes and breast cancer risk for BRCA1 mutation carriers 1325 were evaluated using a 1df per allele trend-test (P-trend), based on modeling the 1326 retrospective likelihood of the observed genotypes conditional on breast cancer phenotypes³⁶. This was done separately for iCOGS and OncoArray data. To allow 1327 for the non-independence among related individuals, an adjusted test statistic was 1328 1329 used which took into account the correlation in genotypes³. All analyses were 1330 stratified by country of residence and, for countries where strata were sufficiently 1331 large (USA and Canada), by Ashkenazi Jewish ancestry. The results from the 1332 iCOGS and OncoArray datasets were then pooled using fixed effects meta-analysis. 1333 We repeated these analyses modelling ovarian cancer as a competing risk and 1334 observed no substantial difference in the results obtained.

1335

The independence of signals from two variants at 11q22.3 was assessed using
OncoArray data only, fitting a Cox regression model with per-allele effects for both
variants, adjusting for birth cohort, stratified by country of residence and using robust
standard errors and clustered observations for relatives. This approach provides
valid significance tests of associations, although the HR estimates can be biased³⁵.

1341

1342 Meta-analysis of BCAC and CIMBA

A fixed effects meta-analysis of results from BCAC and CIMBA was conducted using 1343 1344 an inverse variance approach assuming fixed effects, as implemented in METAL³⁹. 1345 The effect estimates used were the logarithm of the per-allele hazard ratio (HR) 1346 estimate for the association with breast cancer risk in BRCA1 mutation carriers from 1347 CIMBA and the logarithm of the per-allele OR estimate for the association with risk of 1348 ER-negative breast cancer based on BCAC data, both of which were assumed to 1349 approximate the same relative risk. We assessed genomic inflation using common 1350 (MAF>1%) GWAS backbone variants. As lambda is influenced by sample size, we 1351 calculated lambda1000 to be comparable with other studies.

- 1352
- 1353 All statistical tests conducted were two-sided.
- 1354
- 1355 Definition of known hits

1356 We identified all associations previously reported from genome-wide or candidate 1357 analysis at a significance level P<5x10⁻⁸ for overall breast cancer, ER-negative or

1358 ER-positive breast cancer, in *BRCA1* or *BRCA2* carriers, or in meta-analyses of

these categories. We included only one SNP in any 500kb interval, unless joint

analysis provided genome-wide significant evidence (conditional $P < 5 \times 10^{-8}$) of more

1361 than one independent signal. Where multiple studies reported associations in the

same region, we considered the first reported association unless a later study
identified a different variant in the same region that was more strongly associated
with breast cancer risk. One hundred and seven previously reported hits were
identified, 11 of these through GWAS of ER-negative disease or of breast cancer in *BRCA1* mutation carriers, or reported as more strongly associated with ER-negative
breast cancer. These are listed in Table 2. The other 96 previously reported hits are
listed in Supplementary Table 10.

1370 <u>Definition of new hits</u>

1371 To search for novel loci, we assessed all SNPs excluding those within 500kb of a known hit. This identified 206 SNPs in nine regions that were associated with 1372 disease risk at P<5x10⁻⁸ in the meta-analysis of BCAC ER-negative breast cancer 1373 1374 and CIMBA BRCA1 mutation carriers. The SNP with lowest p-value from this 1375 analysis was considered the lead SNP. No additional loci were detected from the analysis of BCAC data only. Imputation quality, as assessed by the IMPUTE2 1376 imputation r^2 in the Oncoarray dataset, was ≥ 0.89 for the 10 lead SNPs reported 1377 1378 (Supplementary Table 3).

1379

1380 Candidate causal SNPs

To define the set of potentially causal variants at each of the novel susceptibility loci, 1381 we selected all variants with p-values within two orders of magnitude of the most 1382 1383 significant SNP at each of the 10 novel loci. This is approximately equivalent to 1384 selecting variants whose posterior probability of causality is within two orders of magnitude of the most significant SNP^{40,41}. This approach was applied to identify 1385 1386 potentially causal variants for the signal given by the more frequent lead SNP at 1387 11q22.3 (rs11374964). A similar approach was applied for the rarer lead SNP at this 1388 locus (rs74911261), but based on p-values from analyses adjusted for rs11374964.

1389

1390 Proportion of familial risk explained

The relative risk of ER-negative breast cancer for the first degree female relative of a woman with ER-negative disease has not been estimated. We therefore assumed that the 2-fold risk observed for overall disease also applied to ER-negative disease. In order to estimate the proportion of this explained by the 125 variants associated with ER-negative disease, we used minor allele frequency and OR estimates from the OncoArray-based genotype data and applied the formula:

1397 $\sum_{i} p_i (1 - p_i) (\beta_i^2 - \tau_i^2) / \ln(\lambda))$, where p_i is the minor allele frequency for variant *i*, β_i is 1398 the log(OR) estimate for variant *i*, τ_i is the standard error of β_i and λ =2 is the 1399 assumed overall familial relative risk.

1400

1401 The corresponding estimate for the FRR due to all variants is the *frailty scale* 1402 heritability, defined as $h_f^2 = \sum_i 2p_i(1-p_i)\gamma_i^2$, where the sum over all variants and γ_i 1403 is the true relative risk conferred by variant *i*, assuming a log-additive model. We first 1404 obtained the estimated heritability based on the full set of summary estimates using 1405 LD Score Regression⁶⁸, which derives a heritability estimate on the observed scale. 1406 We then converted this to an estimate on the fraility scale using the formula $h_f^2 =$

1407 $\frac{h_{obs}^2}{P(1-P)}$, where *P* is the proportion of samples in the population that are cases.

1408

1409 Proportion of polygenic risk-modifying variance explained for BRCA1 carriers.

1410 The proportion of the variance in the polygenic frailty modifying risk in BRCA1 1411 carriers explained by the set of associated SNPs was estimated by $\sum_i \ln c_i / \sigma^2$, where c_i is the squared estimated coefficient of variation in incidences associated with 1412 SNP_i^{78} and σ^2 is the total polygenic variance, estimated from segregation data⁷⁹. 1413 1414 1415 In Silico Annotation of Candidate Causal variants We combined multiple sources of in silico functional annotation from public 1416 1417 databases to help identify potential functional SNPs and target genes, based on 1418 previous observations that breast cancer susceptibility alleles are enriched in *cis*regulatory elements and alter transcriptional activity^{28,80-82}. The influence of 1419 candidate causal variants on transcription factor binding sites was determined 1420 using the ENCODE-Motifs resource⁴³. To investigate functional elements enriched 1421 1422 across the region encompassing the strongest candidate causal SNPs, we 1423 analysed chromatin biofeatures data from the Encyclopedia of DNA Elements (ENCODE) Project⁴², Roadmap Epigenomics Projects⁴⁴ and other data obtained 1424 1425 through the National Center for Biotechnology Information (NCBI) Gene Expression 1426 Omnibus (GEO) namely: Chromatin State Segmentation by Hidden Markov Models 1427 (chromHMM), DNase I hypersensitive and histone modifications of epigenetic 1428 markers H3K4, H3K9, and H3K27 in Human Mammary Epithelial (HMEC) and 1429 myoepithelial (MYO) cells, T47D and MCF7 breast cancer cells and transcription factor ChIP-seq in a range of breast cell lines (Supplementary Table 6). To identify 1430 the SNPs most likely to be functional we used RegulomeDB⁴⁵, and to identify 1431 1432 putative target genes, we examined potential functional chromatin interactions 1433 between distal and proximal regulatory transcription-factor binding sites and the promoters at the risk regions, using Hi-C data generated in HMECs⁴⁷ and 1434 1435 Chromatin Interaction Analysis by Paired End Tag (ChiA-PET) in MCF7 cells. This 1436 detects genome-wide interactions brought about by, or associated with, CCCTCbinding factor (CTCF), DNA polymerase II (POL2), and Estrogen Receptor (ER), all 1437 involved in transcriptional regulation⁴⁷. Annotation of putative *cis*-regulatory regions 1438 and predicted target genes used the Integrated Method for Predicting Enhancer 1439 Targets (IM-PET)⁴⁶, the "Predicting Specific Tissue Interactions of Genes and Enhancers" (PreSTIGE) algorithm⁴⁸, Hnisz⁵¹ and FANTOM⁴⁹. Intersections 1440 1441 1442 between candidate causal variants and regulatory elements were identified using 1443 Galaxy, BedTools v2.24 and HaploReg v4.1, and visualised in the UCSC Genome Browser. Publically available eQTL databases including Gene-Tissue Expression 1444 (GTEx;⁵⁰ version 6, multiple tissues) and Westra⁵² (blood), were queried for 1445 1446 candidate causal variants.

1447

1448 <u>eQTL analyses</u>

Expression quantitative trait loci (eQTL) analyses were performed using data from
The Cancer Genome Atlas (TCGA) and Molecular Taxonomy of Breast Cancer
International Consortium (METABRIC) projects^{59,60}.

1452

The TCGA eQTL analysis was based on 79 ER-negative breast tumors that had
matched gene expression, copy number, and methylation profiles together with the
corresponding germline genotypes available. All 79 individuals were of European
ancestry as ascertained using the genotype data and the Local Ancestry in adMixed
Populations (LAMP) software package (LAMP estimate cut-off >95% European)⁸³.
Germline genotypes were imputed into the 1000 Genomes reference panel (October
2014 release) using IMPUTE2^{75,84}. Gene expression had been measured on the

Illumina HiSeq 2000 RNA-Seq platform (gene-level RSEM normalized counts⁸⁵), 1460 1461 copy number estimates were derived from the Affymetrix SNP 6.0 (somatic copy number alteration minus germline copy number variation called using the GISTIC2 1462 algorithm⁸⁶), and methylation beta values measured on the Illumina Infinium 1463 HumanMethylation450, as previously described⁵⁹. Primary TCGA eQTL analysis 1464 1465 focused on all potentially causal variants in the 10 new regions associated with breast cancer risk in the meta-analysis of ER-negative cases and controls from 1466 1467 BCAC and BRCA1 mutation carriers from CIMBA. We considered all genes located 1468 up to 1 Mb on either side of each of these variants. The effects of tumor copy 1469 number and methylation on gene expression were first removed using a method described previously⁵⁸, and eQTL analysis was performed by linear regression as 1470 implemented in the R package Matrix eQTL⁸⁷. 1471

1472

The METABRIC eQTL analysis was based on 135 normal breast tissue samples
resected from breast cancer patients of European ancestry. Germline genotyping for
the METABRIC study was also done on the Affymetrix SNP 6.0, and ancestry
estimation and imputation for this data set was conducted as described for TCGA.
Gene expression in the METABRIC study had been measured using the Illumina
HT12 microarray platform and we used probe-level estimates. As for TCGA, we
considered all genes in 10 regions using Matrix eQTL.

1480

We also performed additional eQTL analyses using the METABRIC data set for all
variants within 1 Mb of *L3MBTL3* and *CDH2* and the expression of these specific
genes.

- 1484
- 1485 Global Genomic Enrichment Analyses

We performed stratified LD score regression analyses⁶⁸ for ER- breast cancer using
the summary statistics based on the meta-analyses of OncoArray, GWAS, iCOGS
and CIMBA. We used all SNPs in the 1000 Genomes Project phase 1 v3 release
that had a minor allele frequency > 1% and an imputation quality score R²>0.3 in the
OncoArray data. LD scores were calculated using the 1000 Genomes Project Phase
1 v3 EUR panel. Further details are provided in the Supplementary Note.

1492

We tested the differences in functional enrichment between ER-positive and ER negative subsets for individual features through a Wald test, using the regression
 coefficients and standard errors for the two subsets based on the models described
 above. Finally, we assessed the heritability due to genotyped and imputed SNPs⁷⁰
 and estimated the genetic correlation between ER-positive and ER-negative breast
 cancer⁶⁹. The genetic correlation analysis was restricted to the ~1M SNPs included
 in HapMap 3.

- 1500
- 1501
- 1502 Pathway Enrichment Analyses (see also the Supplementary Note)
- 1503 The pathway gene set database

Human_GOBP_AllPathways_no_GO_iea_January_19_2016_symbol.gmt
 (<u>http://baderlab.org/GeneSets</u>)⁶¹, was used for all analyses. Pathway size was
 determined by the total number of genes in the pathway to which SNPs in the
 imputed GWAS dataset could be mapped. To provide more biologically meaningful
 results, and reduce false positives, only pathways that contained between 10 and
 200 genes were considered.

- 1510
- 1511 SNPs were mapped to the nearest gene within 500kb; those that were further than 1512 500 kb away from any gene were excluded. Gene significance was calculated by 1513 assigning the lowest p-value observed across all SNPs assigned to a gene^{63,64},
- 1514 based on the meta-analysis of BCAC and CIMBA data described above.
- 1515

The gene set enrichment analysis (GSEA)⁶¹ algorithm, as implemented in the GenGen package (http://gengen.openbioinformatics.org/en/latest/)^{62,63} was used to perform pathway analysis. Briefly, the algorithm calculates an enrichment score (ES) for each pathway based on a weighted Kolmogorov-Smirnov statistic⁶². Pathways that have most of their genes at the top of the ranked list of genes obtain higher ES values.

1522

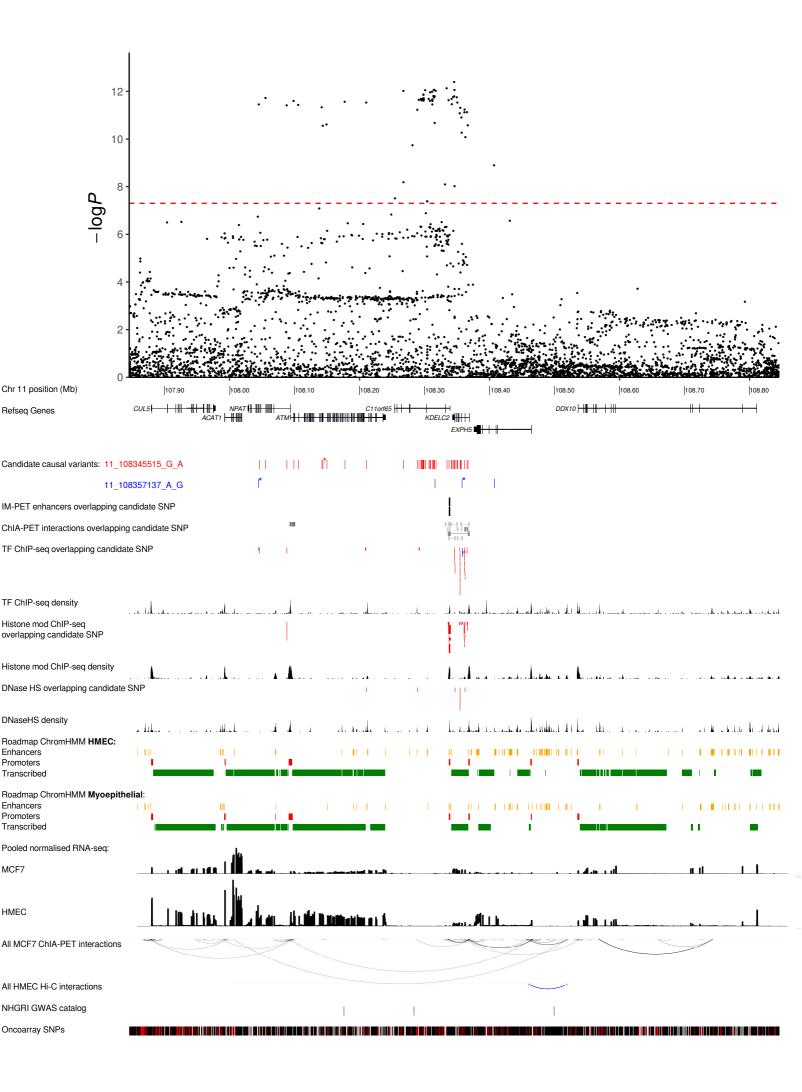
We defined an ES threshold (ES≥0.41) to yield a true-positive rate (TPR) of 0.20 and
a false-positive rate (FPR) of 0.14, with true-positive pathways defined as those
observed with false discovery rate (FDR)<0.05 in a prior analysis carried out using
the analytic approach defined above applied to iCOGS data for ER-negative disease.

To visualize the pathway enrichment analysis results, an enrichment map was created using the Enrichment Map (EM) v 2.1.0 app⁶¹ in Cytoscape v3.30⁸⁸, applying an edge-weighted force directed layout. To measure the contribution of

1531 each gene to enriched pathways and annotate the map, we reran the pathway

1532 enrichment analysis multiple times, each time excluding one gene. A gene was

1533 considered to drive the enrichment if the ES dropped to zero or less (pathway


1534 enrichment driver) after it was excluded. Pathways were grouped in the map if they

1535 shared >70% of their genes or their enrichment was driven by a shared gene. 1536

1537 Additional References

- 153873.Delaneau, O., Marchini, J. & Zagury, J.F. A linear complexity phasing method for1539thousands of genomes. Nat Methods 9, 179-81 (2012).
- 154074.Howie, B.N., Donnelly, P. & Marchini, J. A flexible and accurate genotype imputation1541method for the next generation of genome-wide association studies. *PLoS Genet* 5,1542e1000529 (2009).
- 1543 75. Howie, B., Fuchsberger, C., Stephens, M., Marchini, J. & Abecasis, G.R. Fast and accurate genotype imputation in genome-wide association studies through pre-phasing. *Nat Genet* 44, 955-9 (2012).
- 1546 76. Li, Y., Willer, C.J., Ding, J., Scheet, P. & Abecasis, G.R. MaCH: using sequence and genotype data to estimate haplotypes and unobserved genotypes. *Genet Epidemiol* 34, 816-34 (2010).
- 154977.Aulchenko, Y.S., Struchalin, M.V. & van Duijn, C.M. ProbABEL package for genome-1550wide association analysis of imputed data. *BMC Bioinformatics* **11**, 134 (2010).
- 155178.Antoniou, A.C. & Easton, D.F. Polygenic inheritance of breast cancer: Implications for
design of association studies. *Genet Epidemiol* **25**, 190-202 (2003).
- 155379.Antoniou, A.C. *et al.* The BOADICEA model of genetic susceptibility to breast and
ovarian cancers: updates and extensions. *Br J Cancer* **98**, 1457-66 (2008).
- 155580.Darabi, H. *et al.* Polymorphisms in a Putative Enhancer at the 10q21.2 Breast Cancer1556Risk Locus Regulate NRBF2 Expression. Am J Hum Genet **97**, 22-34 (2015).
- 155781.Glubb, D.M. et al. Fine-scale mapping of the 5q11.2 breast cancer locus reveals at1558least three independent risk variants regulating MAP3K1. Am J Hum Genet 96, 5-201559(2015).

- 156082.Ghoussaini, M. *et al.* Evidence that breast cancer risk at the 2q35 locus is mediated1561through IGFBP5 regulation. *Nat Commun* **4**, 4999 (2014).
- 1562 83. Baran, Y. *et al.* Fast and accurate inference of local ancestry in Latino populations. 1563 *Bioinformatics* **28**, 1359-67 (2012).
- 156484.Abecasis, G.R. *et al.* An integrated map of genetic variation from 1,092 human1565genomes. Nature **491**, 56-65 (2012).
- 1566 85. Li, B. & Dewey, C.N. RSEM: accurate transcript quantification from RNA-Seq data 1567 with or without a reference genome. *BMC Bioinformatics* **12**, 323 (2011).
- 156886.Mermel, C.H. *et al.* GISTIC2.0 facilitates sensitive and confident localization of the
targets of focal somatic copy-number alteration in human cancers. *Genome Biol* **12**,
R41 (2011).
- 1571 87. Shabalin, A.A. Matrix eQTL: ultra fast eQTL analysis via large matrix operations.
 1572 *Bioinformatics* 28, 1353-8 (2012).
- 157388.Shannon, P. *et al.* Cytoscape: a software environment for integrated models of1574biomolecular interaction networks. *Genome Res* **13**, 2498-504 (2003).

