30,934 research outputs found

    Vacuum fluctuations in a supersymmetric model in FRW spacetime

    Full text link
    We study a noninteracting supersymmetric model in an expanding FRW spacetime. A soft supersymmetry breaking induces a nonzero contribution to the vacuum energy density. A short distance cutoff of the order of Planck length provides a scale for the vacuum energy density comparable with the observed cosmological constant. Assuming the presence of a dark energy substance in addition to the vacuum fluctuations of the field an effective equation of state is derived in a selfconsistent approach. The effective equation of state is sensitive to the choice of the cut-off but no fine tuning is needed.Comment: 19 pages, accepted for publication in Phys. Rev.

    Turbulent magnetic dynamo excitation at low magnetic Prandtl number

    Full text link
    Planetary and stellar dynamos likely result from turbulent motions in magnetofluids with kinematic viscosities that are small compared to their magnetic diffusivities. Laboratory experiments are in progress to produce similar dynamos in liquid metals. This work reviews recent computations of thresholds in critical magnetic Reynolds number above which dynamo amplification can be expected for mechanically-forced turbulence (helical and non-helical, short wavelength and long wavelength) as a function of the magnetic Prandtl number PMP_M. New results for helical forcing are discussed, for which a dynamo is obtained at PM=5×10−3P_M=5\times10^{-3}. The fact that the kinetic turbulent spectrum is much broader in wavenumber space than the magnetic spectrum leads to numerical difficulties which are bridged by a combination of overlapping direct numerical simulations and subgrid models of magnetohydrodynamic turbulence. Typically, the critical magnetic Reynolds number increases steeply as the magnetic Prandtl number decreases, and then reaches an asymptotic plateau at values of at most a few hundred. In the turbulent regime and for magnetic Reynolds numbers large enough, both small and large scale magnetic fields are excited. The interactions between different scales in the flow are also discussed.Comment: 8 pages, 8 figures, to appear in Physics of Plasma

    Thomas-Fermi versus one- and two-dimensional regimes of a trapped dipolar Bose-Einstein condensate

    Full text link
    We derive the criteria for the Thomas-Fermi regime of a dipolar Bose-Einstein condensate in cigar, pancake and spherical geometries. This also naturally gives the criteria for the mean-field one- and two-dimensional regimes. Our predictions, including the Thomas-Fermi density profiles, are shown to be in excellent agreement with numerical solutions. Importantly, the anisotropy of the interactions has a profound effect on the Thomas-Fermi/low-dimensional criteria.Comment: 5 pages, 2 figure

    Inflation, Renormalization, and CMB Anisotropies

    Get PDF
    In single-field, slow-roll inflationary models, scalar and tensorial (Gaussian) perturbations are both characterized by a zero mean and a non-zero variance. In position space, the corresponding variance of those fields diverges in the ultraviolet. The requirement of a finite variance in position space forces its regularization via quantum field renormalization in an expanding universe. This has an important impact on the predicted scalar and tensorial power spectra for wavelengths that today are at observable scales. In particular, we find a non-trivial change in the consistency condition that relates the tensor-to-scalar ratio "r" to the spectral indices. For instance, an exact scale-invariant tensorial power spectrum, n_t=0, is now compatible with a non-zero ratio r= 0.12 +/- 0.06, which is forbidden by the standard prediction (r=-8n_t). Forthcoming observations of the influence of relic gravitational waves on the CMB will offer a non-trivial test of the new predictions.Comment: 4 pages, jpconf.cls, to appear in the Proceedings of Spanish Relativity Meeting 2009 (ERE 09), Bilbao (Spain

    Development of a high temperature battery first quarterly technical report

    Get PDF
    High temperature battery development - zeolites, anode and cathode couples, and molten salt

    Structure formation during the collapse of a dipolar atomic Bose-Einstein condensate

    Get PDF
    We investigate the collapse of a trapped dipolar Bose-Einstein condensate. This is performed by numerical simulations of the Gross-Pitaevskii equation and the novel application of the Thomas-Fermi hydrodynamic equations to collapse. We observe regimes of both global collapse, where the system evolves to a highly elongated or flattened state depending on the sign of the dipolar interaction, and local collapse, which arises due to dynamically unstable phonon modes and leads to a periodic arrangement of density shells, disks or stripes. In the adiabatic regime, where ground states are followed, collapse can occur globally or locally, while in the non-adiabatic regime, where collapse is initiated suddenly, local collapse commonly occurs. We analyse the dependence on the dipolar interactions and trap geometry, the length and time scales for collapse, and relate our findings to recent experiments.Comment: In this version (the published version) we have slightly rewritten the manuscript in places and have corrected some typos. 15 pages and 13 figure

    p-Wave stabilization of three-dimensional Bose-Fermi solitons

    Full text link
    We explore bright soliton solutions of ultracold Bose-Fermi gases, showing that the presence of p-wave interactions can remove the usual collapse instability and support stable soliton solutions that are global energy minima. A variational model that incorporates the relevant s- and p-wave interactions in the system is established analytically and solved numerically to probe the dependencies of the solitons on key experimental parameters. Under attractive s-wave interactions, bright solitons exist only as meta-stable states susceptible to collapse. Remarkably, the presence of repulsive p-wave interactions alleviates this collapse instability. This dramatically widens the range of experimentally-achievable soliton solutions and indicates greatly enhanced robustness. While we focus specifically on the boson-fermion pairing of 87Rb and 40K, the stabilization inferred by repulsive p-wave interactions should apply to the wider remit of ultracold Bose-Fermi mixtures.Comment: 9 pages, 6 figure
    • …
    corecore