34 research outputs found

    Contribution of histone variants to aneuploidy: a cancer perspective

    Get PDF
    Histone variants, which generally differ in few amino acid residues, can replace core histones (H1, H2A, H2B, and H3) to confer specific structural and functional features to regulate cellular functions. In addition to their role in DNA packaging, histones modulate key processes such as gene expression regulation and chromosome segregation, which are frequently dysregulated in cancer cells. During the years, histones variants have gained significant attention as gatekeepers of chromosome stability, raising interest in understanding how structural and functional alterations can contribute to tumourigenesis. Beside the well-established role of the histone H3 variant CENP-A in centromere specification and maintenance, a growing body of literature has described mutations, aberrant expression patterns and post-translational modifications of a variety of histone variants in several cancers, also coining the term “oncohistones.” At the molecular level, mechanistic studies have been dissecting the biological mechanisms behind histones and missegregation events, with the potential to uncover novel clinically-relevant targets. In this review, we focus on the current understanding and highlight knowledge gaps of the contribution of histone variants to aneuploidy, and we have compiled a database (HistoPloidyDB) of histone gene alterations linked to aneuploidy in cancers of the The Cancer Genome Atlas project

    Repo-Man/protein phosphatase 1 SUMOylation mediates binding to lamin A and serine 22 dephosphorylation

    Get PDF
    © 2022 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution License. http://creativecommons.org/licenses/by/4.0/Lamin A phosphorylation/de-phosphorylation is an important process during cells division as it allows for nuclear envelope (NE) disassembly at mitotic entry and its re-assembly during mitotic exit. Several kinases have been identified as responsible for these phosphorylations, but no protein phosphatase has been implicated in their reversal. One of the mitotic phosphosites in lamin A responsible for its dynamic behaviour is serine 22 (S22) which is de-phosphorylated during mitotic exit. Recent evidence has also linked the nuclear pool of lamin A S22ph in interphase to gene expression regulation. Previous work suggested that the phosphatase responsible for lamin A S22 de-phosphorylation is chromatin bound and interacts with lamin A via SUMO-SIM motives. We have previously reported that Repo-Man/protein phosphatase 1 (PP1) is a chromatin-associated phosphatase that regulates NE reformation. Here we propose that Repo-Man/PP1 phosphatase mediates lamin A S22 de-phosphorylation. We indeed show that depletion of Repo-Man leads to NE defects, causes hyperphosphorylation of lamin A S22 that can be rescued by a wild-type but not a SUMOylation-deficient mutant. Lamin A and Repo-Man interact in vivo and in vitro, and the interaction is mediated by SUMOylation. Moreover, the localization of Repo-Man/PP1 to the chromatin is essential for lamin A S22 de-phosphorylation.Peer reviewedFinal Published versio

    Mitotic chromosomes are compacted laterally by KIF4 and condensin and axially by topoisomerase IIα

    Get PDF
    © 2012 Samejima et al. This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication dateMitotic chromosome formation involves a relatively minor condensation of the chromatin volume coupled with a dramatic reorganization into the characteristic "X" shape. Here we report results of a detailed morphological analysis, which revealed that chromokinesin KIF4 cooperated in a parallel pathway with condensin complexes to promote the lateral compaction of chromatid arms. In this analysis, KIF4 and condensin were mutually dependent for their dynamic localization on the chromatid axes. Depletion of either caused sister chromatids to expand and compromised the "intrinsic structure" of the chromosomes (defined in an in vitro assay), with loss of condensin showing stronger effects. Simultaneous depletion of KIF4 and condensin caused complete loss of chromosome morphology. In these experiments, topoisomerase IIα contributed to shaping mitotic chromosomes by promoting the shortening of the chromatid axes and apparently acting in opposition to the actions of KIF4 and condensins. These three proteins are major determinants in shaping the characteristic mitotic chromosome morphology

    DNA content of a functioning chicken kinetochore

    Get PDF
    © The Author(s) 2014. In order to understand the three-dimensional structure of the functional kinetochore in vertebrates, we require a complete list and stoichiometry for the protein components of the kinetochore, which can be provided by genetic and proteomic experiments. We also need to know how the chromatin-containing CENP-A, which makes up the structural foundation for the kinetochore, is folded, and how much of that DNA is involved in assembling the kinetochore. In this MS, we demonstrate that functioning metaphase kinetochores in chicken DT40 cells contain roughly 50 kb of DNA, an amount that corresponds extremely closely to the length of chromosomal DNA associated with CENP-A in ChIP-seq experiments. Thus, during kinetochore assembly, CENP-A chromatin is compacted into the inner kinetochore plate without including significant amounts of flanking pericentromeric heterochromatin. © 2014 The Author(s).Wellcome Trust [grant number 073915]; Wellcome Trust Centre for Cell Biology (core grant numbers 077707 and 092076); Darwin Trust of Edinburg

    Scc1/Rad21/Mcd1 Is Required for Sister Chromatid Cohesion and Kinetochore Function in Vertebrate Cells

    Get PDF
    AbstractProteolytic cleavage of the cohesin subunit Scc1 is a consistent feature of anaphase onset, although temporal differences exist between eukaryotes in cohesin loss from chromosome arms, as distinct from centromeres. We describe the effects of genetic deletion of Scc1 in chicken DT40 cells. Scc1 loss caused premature sister chromatid separation but did not disrupt chromosome condensation. Scc1 mutants showed defective repair of spontaneous and induced DNA damage. Scc1-deficient cells frequently failed to complete metaphase chromosome alignment and showed chromosome segregation defects, suggesting aberrant kinetochore function. Notably, the chromosome passenger INCENP did not localize normally to centromeres, while the constitutive kinetochore proteins CENP-C and CENP-H behaved normally. These results suggest a role for Scc1 in mitotic regulation, along with cohesion

    Severe acquired cytomegalovirus infection in a full-term, formula-fed infant: Case Report

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cases of cytomegalovirus colitis are exceptionally reported in immuno-competent infant. The pathogenesis is uncertain but breast-feeding is considered as a main source of postnatal infection.</p> <p>Case Presentation</p> <p>Here we report a full-term, formula-fed infant who developed a severe cytomegalovirus anaemia and colitis when aged 2 months.</p> <p>Conclusion</p> <p>Even if the molecular identity between the cytomegalovirus-isolate of the infant and the maternal virus could not be demonstrated, we confirmed through laboratory investigation that cytomegalovirus infection was acquired postnatally. However, the source of cytomegalovirus infection remained unclear. Alternative modes of cytomegalovirus transmission are discussed.</p

    Mutations in pericentrin cause Seckel syndrome with defective ATR-dependent DNA damage signaling

    Get PDF
    Large brain size is one of the defining characteristics of modern humans. Seckel syndrome (MIM 210600), a disorder of markedly reduced brain and body size, is associated with defective ATR-dependent DNA damage signaling. Only a single hypomorphic mutation of ATR has been identified in this genetically heterogeneous condition. We now report that mutations in the gene encoding pericentrin (PCNT)--resulting in the loss of pericentrin from the centrosome, where it has key functions anchoring both structural and regulatory proteins--also cause Seckel syndrome. Furthermore, we find that cells of individuals with Seckel syndrome due to mutations in PCNT (PCNT-Seckel) have defects in ATR-dependent checkpoint signaling, providing the first evidence linking a structural centrosomal protein with DNA damage signaling. These findings also suggest that other known microcephaly genes implicated in either DNA repair responses or centrosomal function may act in common developmental pathways determining human brain and body size
    corecore