167 research outputs found

    Increased Seroreactivity to Glioma-Expressed Antigen 2 in Brain Tumor Patients under Radiation

    Get PDF
    Background: Surgery and radiation are the mainstays of therapy for human gliomas that are the most common primary brain tumors. Most recently, cell culture and animal studies provided the first convincing evidence that radiation not only eliminates tumor cells, but also modulates the immune response and likely improves anti-tumor immunotherapy. Methology/Pricipal Findings: We present an in vivo study that analyzes the effects of radiation on the immune response in tumor patients. As readout system, we utilized the reactivity of glioma patients ’ sera against antigen GLEA2 as the most frequent antigen immunogenic in glioblastoma patients. We established an ELISA assay to analyze reactivity of 24 glioblastoma patients over a period of several months. As control we used 30 sera from healthy donors as well as 30 sera from lung cancer patients. We compared the course of GLEA2 seroreactivity at different times prior, during and after radiation. The GLEA2 seroreactivity was increased by the time of surgery, decreased after surgery, increased again under radiation, and slightly decreased after radiation. Conclusions/Significance: Our results provide in vivo evidence for an increased antibody response against tumor antigens under radiation. Antigens that become immunogenic with an increased antibody response as result of radiation can serv

    Sensitizing Protective Tumor Microenvironments to Antibody-Mediated Therapy

    Get PDF
    Therapy-resistant microenvironments represent a major barrier toward effective elimination of disseminated malignancies. Here, we show that select microenvironments can underlie resistance to antibody-based therapy. Using a humanized model of treatment refractory B cell leukemia, we find that infiltration of leukemia cells into the bone marrow rewires the tumor microenvironment to inhibit engulfment of antibody-targeted tumor cells. Resistance to macrophage-mediated killing can be overcome by combination regimens involving therapeutic antibodies and chemotherapy. Specifically, the nitrogen mustard cyclophosphamide induces an acute secretory activating phenotype (ASAP), releasing CCL4, IL8, VEGF, and TNFα from treated tumor cells. These factors induce macrophage infiltration and phagocytic activity in the bone marrow. Thus, the acute induction of stress-related cytokines can effectively target cancer cells for removal by the innate immune system. This synergistic chemoimmunotherapeutic regimen represents a potent strategy for using conventional anticancer agents to alter the tumor microenvironment and promote the efficacy of targeted therapeutics.Massachusetts Institute of Technology. Ludwig Center for Molecular OncologyKathy and Curt Marble Cancer Research FundSingapore-MIT Alliance for Research and TechnologyGerman Research Foundation (KFO286)German Research Foundation (Fellowship)National Cancer Institute (U.S.) (Koch Institute Support (Core) Grant P30-CA14051

    Aberrant splicing of the tumor suppressor CYLD promotes the development of chronic lymphocytic leukemia via sustained NF-kappaB signaling.

    Get PDF
    The pathogenesis of chronic lymphocytic leukemia (CLL) has been linked to constitutive NF-kappaB activation but the underlying mechanisms are poorly understood. Here we show that alternative splicing of the negative regulator of NF-kappaB and tumor suppressor gene CYLD regulates the pool of CD5(+) B cells through sustained canonical NF-kappaB signaling. Reinforced canonical NF-kappaB activity leads to the development of B1 cell-associated tumor formation in aging mice by promoting survival and proliferation of CD5(+) B cells, highly reminiscent of human B-CLL. We show that a substantial number of CLL patient samples express sCYLD, strongly implicating a role for it in human B-CLL. We propose that our new CLL-like mouse model represents an appropriate tool for studying ubiquitination-driven canonical NF-kappaB activation in CLL. Thus, inhibition of alternative splicing of this negative regulator is essential for preventing NF-kappaB-driven clonal CD5(+) B-cell expansion and ultimately CLL-like disease

    Overview of the PALM model system 6.0

    Get PDF
    In this paper, we describe the PALM model system 6.0. PALM (formerly an abbreviation for Parallelized Largeeddy Simulation Model and now an independent name) is a Fortran-based code and has been applied for studying a variety of atmospheric and oceanic boundary layers for about 20 years. The model is optimized for use on massively parallel computer architectures. This is a follow-up paper to the PALM 4.0 model description in Maronga et al. (2015). During the last years, PALM has been significantly improved and now offers a variety of new components. In particular, much effort was made to enhance the model with components needed for applications in urban environments, like fully interactive land surface and radiation schemes, chemistry, and an indoor model. This paper serves as an overview paper of the PALM 6.0 model system and we describe its current model core. The individual components for urban applications, case studies, validation runs, and issues with suitable input data are presented and discussed in a series of companion papers in this special issue

    Rapid generation of human B-cell lymphomas via combined expression of Myc and Bcl2 and their use as a preclinical model for biological therapies

    Get PDF
    Although numerous mouse models of B-cell malignancy have been developed via the enforced expression of defined oncogenic lesions, the feasibility of generating lineage-defined human B-cell malignancies using mice reconstituted with modified human hematopoietic stem cells (HSCs) remains unclear. In fact, whether human cells can be transformed as readily as murine cells by simple oncogene combinations is a subject of considerable debate. Here, we describe the development of humanized mouse model of MYC/BCL2-driven ‘double-hit’ lymphoma. By engrafting human HSCs transduced with the oncogene combination into immunodeficient mice, we generate a fatal B malignancy with complete penetrance. This humanized-MYC/BCL2-model (hMB) accurately recapitulates the histopathological and clinical aspects of steroid-, chemotherapy- and rituximab-resistant human ‘double-hit’ lymphomas that involve the MYC and BCL2 loci. Notably, this model can serve as a platform for the evaluation of antibody-based therapeutics. As a proof of principle, we used this model to show that the anti-CD52 antibody alemtuzumab effectively eliminates lymphoma cells from the spleen, liver and peripheral blood, but not from the brain. The hMB humanized mouse model underscores the synergy of MYC and BCL2 in ‘double-hit’ lymphomas in human patients. Additionally, our findings highlight the utility of humanized mouse models in interrogating therapeutic approaches, particularly human-specific monoclonal antibodies.Kathy and Curt Marble Cancer Research FundSingapore-MIT Alliance for Research and TechnologyNational Institutes of Health (U.S.) (Grant R01-CA128803)Virginia and Daniel K. Ludwig Graduate FellowshipNational Institute of General Medical Sciences (U.S.) (Medical Scientist Training Program Grant T32GM007753)MIT School of Science (Cancer Research Fellowship

    Blockade of Fatty Acid Synthase Triggers Significant Apoptosis in Mantle Cell Lymphoma

    Get PDF
    Fatty acid synthase (FASN), a key player in the de novo synthetic pathway of long-chain fatty acids, has been shown to contribute to the tumorigenesis in various types of solid tumors. We here report that FASN is highly and consistently expressed in mantle cell lymphoma (MCL), an aggressive form of B-cell lymphoid malignancy. Specifically, the expression of FASN was detectable in all four MCL cell lines and 15 tumors examined. In contrast, benign lymphoid tissues and peripheral blood mononuclear cells from normal donors were negative. Treatment of MCL cell lines with orlistat, a FASN inhibitor, resulted in significant apoptosis. Knockdown of FASN expression using siRNA, which also significantly decreased the growth of MCL cells, led to a dramatic decrease in the cyclin D1 level. β-catenin, which has been previously reported to be upregulated in a subset of MCL tumors, contributed to the high level of FASN in MCL cells, Interesting, siRNA knock-down of FASN in turn down-regulated β-catenin. In conclusion, our data supports the concept that FASN contributes to the pathogenesis of MCL, by collaborating with β-catenin. In view of its high and consistent expression in MCL, FASN inhibitors may hold promises for treating MCL

    Downregulation of miR-205 and miR-31 confers resistance to chemotherapy-induced apoptosis in prostate cancer cells

    Get PDF
    Advanced prostate cancers are known to acquire not only invasive capabilities but also significant resistance to chemotherapy-induced apoptosis. To understand how microRNAs (miRNAs) may contribute to prostate cancer resistance to apoptosis, we compared microRNA expression profiles of a benign prostate cancer cell line WPE1-NA22 and a highly malignant WPE1-NB26 cell line (derived from a common lineage). We found that miR-205 and miR-31 are significantly downregulated in WPE1-NB26 cells, as well as in other cell lines representing advanced-stage prostate cancers. Antiapoptotic genes BCL2L2 (encoding Bcl-w) and E2F6 are identified as the targets of miR-205 and miR-31, respectively. By downregulating Bcl-w and E2F6, miR-205 and miR-31 promote chemotherapeutic agents-induced apoptosis in prostate cancer cells. The promoter region of the miR-205 gene was cloned and was found to be hypermethylated in cell lines derived from advanced prostate cancers, contributing to the downregulation of the gene. Treatment with DNA methylation inhibitor 5-aza-2′-deoxycytidine induced miR-205 expression, downregulated Bcl-w, and sensitized prostate cancer cells to chemotherapy-induced apoptosis. Thus, downregulation of miR-205 and miR-31 has an important role in apoptosis resistance in advanced prostate cancer

    Using Functional Signatures to Identify Repositioned Drugs for Breast, Myelogenous Leukemia and Prostate Cancer

    Get PDF
    The cost and time to develop a drug continues to be a major barrier to widespread distribution of medication. Although the genomic revolution appears to have had little impact on this problem, and might even have exacerbated it because of the flood of additional and usually ineffective leads, the emergence of high throughput resources promises the possibility of rapid, reliable and systematic identification of approved drugs for originally unintended uses. In this paper we develop and apply a method for identifying such repositioned drug candidates against breast cancer, myelogenous leukemia and prostate cancer by looking for inverse correlations between the most perturbed gene expression levels in human cancer tissue and the most perturbed expression levels induced by bioactive compounds. The method uses variable gene signatures to identify bioactive compounds that modulate a given disease. This is in contrast to previous methods that use small and fixed signatures. This strategy is based on the observation that diseases stem from failed/modified cellular functions, irrespective of the particular genes that contribute to the function, i.e., this strategy targets the functional signatures for a given cancer. This function-based strategy broadens the search space for the effective drugs with an impressive hit rate. Among the 79, 94 and 88 candidate drugs for breast cancer, myelogenous leukemia and prostate cancer, 32%, 13% and 17% respectively are either FDA-approved/in-clinical-trial drugs, or drugs with suggestive literature evidences, with an FDR of 0.01. These findings indicate that the method presented here could lead to a substantial increase in efficiency in drug discovery and development, and has potential application for the personalized medicine

    Persistence and clearance of Ebola virus RNA from seminal fluid of Ebola virus disease survivors: a longitudinal analysis and modelling study

    Get PDF
    Background By January, 2016, all known transmission chains of the Ebola virus disease (EVD) outbreak in west Africa had been stopped. However, there is concern about persistence of Ebola virus in the reproductive tract of men who have survived EVD. We aimed to use biostatistical modelling to describe the dynamics of Ebola virus RNA load in seminal fl uid, including clearance parameters. Methods In this longitudinal study, we recruited men who had been discharged from three Ebola treatment units in Guinea between January and July, 2015. Participants provided samples of seminal fl uid at follow-up every 3–6 weeks, which we tested for Ebola virus RNA using quantitative real-time RT-PCR. Representative specimens from eight participants were then inoculated into immunodefi cient mice to test for infectivity. We used a linear mixed-eff ect model to analyse the dynamics of virus persistence in seminal fl uid over time. Findings We enrolled 26 participants and tested 130 seminal fl uid specimens; median follow up was 197 days (IQR 187–209 days) after enrolment, which corresponded to 255 days (228–287) after disease onset. Ebola virus RNA was detected in 86 semen specimens from 19 (73%) participants. Median duration of Ebola virus RNA detection was 158 days after onset (73–181; maximum 407 days at end of follow-up). Mathematical modelling of the quantitative time-series data showed a mean clearance rate of Ebola virus RNA from seminal fl uid of –0·58 log units per month, although the clearance kinetic varied greatly between participants. Using our biostatistical model, we predict that 50% and 90% of male survivors clear Ebola virus RNA from seminal fl uid at 115 days (90% prediction interval 72–160) and 294 days (212–399) after disease onset, respectively. We also predicted that the number of men positive for Ebola virus RNA in aff ected countries would decrease from about 50 in January 2016, to fewer than 1 person by July, 2016. Infectious virus was detected in 15 of 26 (58%) specimens tested in mice. Interpretation Time to clearance of Ebola virus RNA from seminal fl uid varies greatly between individuals and could be more than 13 months. Our predictions will assist in decision-making about surveillance and preventive measures in EVD outbreaks
    corecore