Aberrant splicing of the tumor suppressor CYLD promotes the development of chronic lymphocytic leukemia via sustained NF-kB signaling.

Hahn M^1 , Bürckert JP^2 , Luttenberger CA^1 , Klebow S^1 , Hess M^3 , Al-Maarri M^4 , Vogt M^4 , Reißig S^1 , Hallek M^5 , Wienecke-Baldacchino A^6 , Buch T^7 , Muller CP^2 , Pallasch CP^5 , Wunderlich FT^4 , Waisman A^1 , Hövelmeyer N^1 .

Author information

- Institute for Molecular Medicine, University Medical Centre of the Johannes Gutenberg-University of Mainz, Mainz, Germany.
- 2 Department of Infection and Immunity, Luxembourg Institute of Health, Strassen, Luxembourg.
- 3 Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Centre of the Johannes Gutenberg-University of Mainz, Mainz, Germany.
- 4 Max Planck Institute for Metabolism Research, CECAD, CMMC, Institute for Genetics, Cologne, Germany.
- 5 Department I of Internal Medicine, CMMC, CECAD, University of Cologne, Cologne, Germany.
- 6 Life Science Research Unit (LSRU), University of Luxembourg, Esch-sur-Alzette, Luxembourg.
- 7 Institute of Laboratory Animal Science, University of Zürich, Zürich, Switzerland.

Abstract

The pathogenesis of chronic lymphocytic leukemia (CLL) has been linked to constitutive NF- κ B activation but the underlying mechanisms are poorly understood. Here we show that alternative splicing of the negative regulator of NF- κ B and tumor suppressor gene CYLD regulates the pool of CD5+ B cells through sustained canonical NF- κ B signaling. Reinforced canonical NF- κ B activity leads to the development of B1 cell-associated tumor formation in aging mice by promoting survival and proliferation of CD5+ B cells, highly reminiscent of human B-CLL. We show that a substantial number of CLL patient samples express sCYLD, strongly implicating a role for it in human B-CLL. We propose that our new CLL-like mouse model represents an appropriate tool for studying ubiquitination-driven canonical NF- κ B activation in CLL. Thus, inhibition of alternative splicing of this negative regulator is essential for preventing NF- κ B-driven clonal CD5+ B-cell expansion and ultimately CLL-like disease.