38 research outputs found
Recommended from our members
Efficient identification of hydrophobic MOFs: Application in the capture of toxic industrial chemicals
A novel and quick computational strategy is developed based on water Henry's constants to distinguish different levels of hydrophobicity among metal–organic frameworks. The technique is applied to a large database of MOFs to identify hydrophobic materials.We thank the Army Research Office (grant W911NF-12-1-0130) and the EPSRC IAA Partnership Development Award (RG/75759) for financial support. Computational work was partly supported by Northwestern University's shared computer system, Quest (project: P20261). D. F.-J. thanks the Royal Society for funding through a University Research Fellowship. We also thank Prof. Omar Yaghi and Dr Hiroyasu Furukawa for supplying the experimental water isotherms for some of the MOFs studied in this work. We thank Dr Pritha Ghosh and Dr Diego A. Gomez-Gualdron for fruitful discussions.This is the author accepted manuscript. The final version is available from the Royal Society of Chemistry via http://dx.doi.org/10.1039/c5ta06472
Recommended from our members
Probing the Mechanochemistry of Metal-Organic Frameworks with Low-Frequency Vibrational Spectroscopy
The identification and characterization of low-frequency vibrational motions of metal-organic frameworks (MOFs) allows for a better understanding of their mechanical and structural response upon perturbation by external stimuli such as temperature, pressure, and adsorption. Here, we describe the combination of an experimental temperature- and pressure-dependent terahertz spectroscopy system with quantum mechanical simulations to measure and assign specific low-frequency vibrational modes that directly drive the mechanochemical properties of this important class of porous materials. More specifically, those intense spectral features in the terahertz region of the vibrational spectrum of ZIF-8 are identified, which are directly connected to its mechanochemical response. In particular, the mechanical compressibility of pristine ZIF-8 is found to follow a peculiar non-linear trend upon pressure: its bulk modulus initially increases up to 0.1 GPa and decreases at higher pressures, which is simultaneously reflected in the terahertz vibrational spectra. This work highlights the interplay between structural, vibrational, and mechanochemical phenomena, all of which are key to the effective exploitation of MOFs. The importance of terahertz vibrational motions on the function of MOFs is demonstrated, and a method presented for their measurement and interpretation, which can be applied widely to any supramolecular material
Recommended from our members
A Highly Porous Metal-Organic Framework System to Deliver Payloads for Gene Knockdown
© 2019 Elsevier Inc. Gene knockdown is an advantageous therapeutic strategy to lower dangerous genetic over-expression. However, the molecules responsible for initiating this process are unstable. Porous nanoparticles called metal-organic frameworks can encapsulate, protect, and deliver these compounds efficaciously without the need for chemical modifications—commonly done to enhance stability. By applying this platform technology, this work demonstrates the successful reduction in expression of a gene by avoiding retention and subsequent degradation in cellular compartments.This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (NanoMOFdeli), ERC-2016-COG 726380, and (SUPUVIR) no. 722380. M.H.T. thanks the Gates Cambridge Trust for funding, S. Haddad for helpful discussions, and A. Li for assistance with data visualization. D.F.-J. thanks the Royal Society for funding through a University Research Fellowship. S.B.d.Q.F., F.M.R., and D.I.J. were funded by Cancer Research UK Senior Group Leader Grant CRUK/A15678. O.K.F. gratefully acknowledges DTRA for financial support (grant HDTRA-1-14-1-0014). C.F.K. acknowledges funding from the UK Engineering and Physical Sciences Research Council (grants EP/L015889/1 and EP/H018301/1), the Wellcome Trust (grants 3-3249/Z/16/Z and 089703/Z/09/Z) and the UK Medical Research Council (grants MR/K015850/1 and MR/K02292X/1), and Infinitus (China) Ltd. Computational work was supported by the Cambridge High Performance Computing Cluster, Darwin
Tuning porosity in macroscopic monolithic metal-organic frameworks for exceptional natural gas storage.
Widespread access to greener energy is required in order to mitigate the effects of climate change. A significant barrier to cleaner natural gas usage lies in the safety/efficiency limitations of storage technology. Despite highly porous metal-organic frameworks (MOFs) demonstrating record-breaking gas-storage capacities, their conventionally powdered morphology renders them non-viable. Traditional powder shaping utilising high pressure or chemical binders collapses porosity or creates low-density structures with reduced volumetric adsorption capacity. Here, we report the engineering of one of the most stable MOFs, Zr-UiO-66, without applying pressure or binders. The process yields centimetre-sized monoliths, displaying high microporosity and bulk density. We report the inclusion of variable, narrow mesopore volumes to the monoliths' macrostructure and use this to optimise the pore-size distribution for gas uptake. The optimised mixed meso/microporous monoliths demonstrate Type II adsorption isotherms to achieve benchmark volumetric working capacities for methane and carbon dioxide. This represents a critical advance in the design of air-stable, conformed MOFs for commercial gas storage
Metal-Organic Nanosheets Formed via Defect-Mediated Transformation of a Hafnium Metal-Organic Framework
We report a hafnium-containing MOF, hcp UiO-67(Hf), which is a ligand-deficient layered analogue of the face-centered cubic fcu UiO-67(Hf). hcp UiO-67 accommodates its lower ligand:metal ratio compared to fcu UiO-67 through a new structural mechanism: the formation of a condensed "double cluster" (HfO(OH)), analogous to the condensation of coordination polyhedra in oxide frameworks. In oxide frameworks, variable stoichiometry can lead to more complex defect structures, e.g., crystallographic shear planes or modules with differing compositions, which can be the source of further chemical reactivity; likewise, the layered hcp UiO-67 can react further to reversibly form a two-dimensional metal-organic framework, hxl UiO-67. Both three-dimensional hcp UiO-67 and two-dimensional hxl UiO-67 can be delaminated to form metal-organic nanosheets. Delamination of hcp UiO-67 occurs through the cleavage of strong hafnium-carboxylate bonds and is effected under mild conditions, suggesting that defect-ordered MOFs could be a productive route to porous two-dimensional materials.M.J.C. was supported by Sidney Sussex College, Cambridge; M.J.C., J.A.H., and A.L.G. were supported by the European Research Council (279705); and J.L., A.C.F., E.C.-M., and C.P.G. were supported by the Engineering and Physical Sciences Research Council (U.K.) under the Supergen Consortium and Grant (EP/N001583/1). D.F.-J. thanks the Royal Society for funding through a University Research Fellowship. The Diamond Light Source Ltd. (beamlines I11 (EE9940, EE15118), I12 (EE12554), and I15 (EE13681, EE13843) is thanked for providing beamtime. Via our membership of the UK’s HEC Materials Chemistry Consortium, which is funded by EPSRC (EP/L000202), this work used the ARCHER UK National Supercomputing Service (http://www.archer.ac.uk). Part of this work was performed using the Darwin Supercomputer of the University of Cambridge High Performance Computing Service (http://www.hpc.cam.ac.uk/), provided by Dell Inc. using Strategic Research Infrastructure Funding from the Higher Education Funding Council for England and funding from the Science and Technology Facilities Council
Metal-organic framework glasses with permanent accessible porosity.
To date, only several microporous, and even fewer nanoporous, glasses have been produced, always via post synthesis acid treatment of phase separated dense materials, e.g. Vycor glass. In contrast, high internal surface areas are readily achieved in crystalline materials, such as metal-organic frameworks (MOFs). It has recently been discovered that a new family of melt quenched glasses can be produced from MOFs, though they have thus far lacked the accessible and intrinsic porosity of their crystalline precursors. Here, we report the first glasses that are permanently and reversibly porous toward incoming gases, without post-synthetic treatment. We characterize the structure of these glasses using a range of experimental techniques, and demonstrate pores in the range of 4 - 8 Å. The discovery of MOF glasses with permanent accessible porosity reveals a new category of porous glass materials that are elevated beyond conventional inorganic and organic porous glasses by their diversity and tunability
Understanding the adsorption process in ZIF-8 using high pressure crystallography and computational modelling
Understanding host–guest interactions and structural changes within porous materials is crucial for enhancing gas storage properties. Here, the authors combine cryogenic loading of gases with high pressure crystallography and computational techniques to obtain atomistic detail of adsorption-induced structural and energetic changes in ZIF-8
A sol–gel monolithic metal–organic framework with enhanced methane uptake
A critical bottleneck for the use of natural gas as a transportation fuel has been the development of materials capable of storing it in a sufficiently compact form at ambient temperature. Here we report the synthesis of a porous monolithic metal-organic framework (MOF), which after successful packing and densification reaches 259 cm3 (STP) cm-3 capacity. This is the highest value reported to date for conformed shape porous solids, and represents a greater than 50% improvement over any previously reported experimental value. Nanoindentation tests on the monolithic MOF showed robust mechanical properties, with hardness at least 130% greater than that previously measured in its conventional MOF counterparts. Our findings represent a substantial step in the application of mechanically robust conformed and densified MOFs for high volumetric energy storage and other industrial applications