38 research outputs found

    Tuning porosity in macroscopic monolithic metal-organic frameworks for exceptional natural gas storage.

    Get PDF
    Widespread access to greener energy is required in order to mitigate the effects of climate change. A significant barrier to cleaner natural gas usage lies in the safety/efficiency limitations of storage technology. Despite highly porous metal-organic frameworks (MOFs) demonstrating record-breaking gas-storage capacities, their conventionally powdered morphology renders them non-viable. Traditional powder shaping utilising high pressure or chemical binders collapses porosity or creates low-density structures with reduced volumetric adsorption capacity. Here, we report the engineering of one of the most stable MOFs, Zr-UiO-66, without applying pressure or binders. The process yields centimetre-sized monoliths, displaying high microporosity and bulk density. We report the inclusion of variable, narrow mesopore volumes to the monoliths' macrostructure and use this to optimise the pore-size distribution for gas uptake. The optimised mixed meso/microporous monoliths demonstrate Type II adsorption isotherms to achieve benchmark volumetric working capacities for methane and carbon dioxide. This represents a critical advance in the design of air-stable, conformed MOFs for commercial gas storage

    Metal-Organic Nanosheets Formed via Defect-Mediated Transformation of a Hafnium Metal-Organic Framework

    Get PDF
    We report a hafnium-containing MOF, hcp UiO-67(Hf), which is a ligand-deficient layered analogue of the face-centered cubic fcu UiO-67(Hf). hcp UiO-67 accommodates its lower ligand:metal ratio compared to fcu UiO-67 through a new structural mechanism: the formation of a condensed "double cluster" (Hf12_{12}O8_{8}(OH)14_{14}), analogous to the condensation of coordination polyhedra in oxide frameworks. In oxide frameworks, variable stoichiometry can lead to more complex defect structures, e.g., crystallographic shear planes or modules with differing compositions, which can be the source of further chemical reactivity; likewise, the layered hcp UiO-67 can react further to reversibly form a two-dimensional metal-organic framework, hxl UiO-67. Both three-dimensional hcp UiO-67 and two-dimensional hxl UiO-67 can be delaminated to form metal-organic nanosheets. Delamination of hcp UiO-67 occurs through the cleavage of strong hafnium-carboxylate bonds and is effected under mild conditions, suggesting that defect-ordered MOFs could be a productive route to porous two-dimensional materials.M.J.C. was supported by Sidney Sussex College, Cambridge; M.J.C., J.A.H., and A.L.G. were supported by the European Research Council (279705); and J.L., A.C.F., E.C.-M., and C.P.G. were supported by the Engineering and Physical Sciences Research Council (U.K.) under the Supergen Consortium and Grant (EP/N001583/1). D.F.-J. thanks the Royal Society for funding through a University Research Fellowship. The Diamond Light Source Ltd. (beamlines I11 (EE9940, EE15118), I12 (EE12554), and I15 (EE13681, EE13843) is thanked for providing beamtime. Via our membership of the UK’s HEC Materials Chemistry Consortium, which is funded by EPSRC (EP/L000202), this work used the ARCHER UK National Supercomputing Service (http://www.archer.ac.uk). Part of this work was performed using the Darwin Supercomputer of the University of Cambridge High Performance Computing Service (http://www.hpc.cam.ac.uk/), provided by Dell Inc. using Strategic Research Infrastructure Funding from the Higher Education Funding Council for England and funding from the Science and Technology Facilities Council

    Metal-organic framework glasses with permanent accessible porosity.

    Get PDF
    To date, only several microporous, and even fewer nanoporous, glasses have been produced, always via post synthesis acid treatment of phase separated dense materials, e.g. Vycor glass. In contrast, high internal surface areas are readily achieved in crystalline materials, such as metal-organic frameworks (MOFs). It has recently been discovered that a new family of melt quenched glasses can be produced from MOFs, though they have thus far lacked the accessible and intrinsic porosity of their crystalline precursors. Here, we report the first glasses that are permanently and reversibly porous toward incoming gases, without post-synthetic treatment. We characterize the structure of these glasses using a range of experimental techniques, and demonstrate pores in the range of 4 - 8 Å. The discovery of MOF glasses with permanent accessible porosity reveals a new category of porous glass materials that are elevated beyond conventional inorganic and organic porous glasses by their diversity and tunability

    Understanding the adsorption process in ZIF-8 using high pressure crystallography and computational modelling

    Get PDF
    Understanding host–guest interactions and structural changes within porous materials is crucial for enhancing gas storage properties. Here, the authors combine cryogenic loading of gases with high pressure crystallography and computational techniques to obtain atomistic detail of adsorption-induced structural and energetic changes in ZIF-8

    A sol–gel monolithic metal–organic framework with enhanced methane uptake

    No full text
    A critical bottleneck for the use of natural gas as a transportation fuel has been the development of materials capable of storing it in a sufficiently compact form at ambient temperature. Here we report the synthesis of a porous monolithic metal-organic framework (MOF), which after successful packing and densification reaches 259 cm3 (STP) cm-3 capacity. This is the highest value reported to date for conformed shape porous solids, and represents a greater than 50% improvement over any previously reported experimental value. Nanoindentation tests on the monolithic MOF showed robust mechanical properties, with hardness at least 130% greater than that previously measured in its conventional MOF counterparts. Our findings represent a substantial step in the application of mechanically robust conformed and densified MOFs for high volumetric energy storage and other industrial applications
    corecore